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brain is organised into intrinsic functional networks, and contrast the resultant advance with
the more limited aims and methods of the P-FIT model. We address the primary objection of

Keny)TdSi Haier and colleagues by demonstrating that the unrotated model is not only a poorly defined
g&g}hgence psychological construct, but also neurobiologically implausible in the context of the fMRI

data. Finally, we discuss how the distinct strengths of behavioural and neuroimaging data may best
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et be combined in order to refine a model that captures the intrinsic architecture of human cognitive

abilities.
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scientific publishing. The fact that an invited commentary
was evaluated by the Editorial team and not considered
worthy of publication is not, in our experience, unusual. Nor
is it unusual for researchers within the broader scientific
community to question novel ideas that challenge main-
stream views. However, the authors of this ‘Preview’ appear
to suggest that (in this case) the peer-review process should
have been subverted to accommodate a wider range of
uninvited reviews, including those of anonymous bloggers.
We also note, that it is somewhat irregular to publish
personal email communications without first seeking
permission.

In our opinion, the decision of the editors at Neuron was
most likely to have been made because the points outlined by
Haier and colleagues related to their having misunderstood
the basic aims, methods and results of our original article,
which are quite distinct from those of their P-FIT model.
Contrary to their claims, there are no substantial methodo-
logical ‘flaws’ or unintentional ‘conceptual confusions’ in the
original article; rather, our analyses focused on addressing a
specific and interdependent series of empirical questions.
Consequently, we welcome the opportunity to address their
comments in more depth here.

2. Point 1: Qualitative differences in the aims and approaches
of Fractionating Human Intelligence and the P-FIT model

Haier and colleagues state that the aims of Fractionating
Human Intelligence (Hampshire, Highfield, Parkin, & Owen,
2012) are similar to those of their P-FIT model — citing
‘common interests about the importance of combining
neuroimaging with psychometrics. They claim to have
‘used imaging analyses to test and constrain the Parietal
Frontal Integration Theory (PFIT) of intelligence (Jung &
Haier, 2007)." However, the aims of these two lines of
research are altogether distinct. Specifically, Haier and
colleagues assume that it is impractical to differentiate
between the relative validities of an unrotated factor
solution, a rotated factor solution and a hierarchical factor
solution. They advocate the unrotated factor solution because
it ‘minimises judgement calls’ and go on to seek a neural
analogue. However, they also acknowledge that this approach is
limited insofar as the first unrotated factor will certainly produce
the largest possible heterogeneous mixture of abilities. Further-
more, they favour the method of applying a prior sub-division of
the brain according to Brodmann areas (Jung & Haier, 2007);
that is, by cytoarchitectonic sub-divisions. It is well established,
that the functional subdivisions of the brain do not map well
onto the cytoarchitecture at all. In this respect, they take the
largest possible mixture of abilities, and map them onto what are
known to be mixtures of brain systems. Unsurprisingly, they
observe correlations with many Brodmann areas, but these
correlations lack cognitive specificity and spatial resolution. This
exercise neither attempts to, nor provides, any advance in our
understanding of the architecture of human cognition, or
relatedly, the structure of individual differences in cognitive
abilities. The rationale provided to justify this limitation is that
when estimating factor models ‘all solutions can be appropriate
in some circumstances and not in others, and evaluating any
solution is a matter of judgement, just like deciding whether the
most useful view of a building in which you need to do some

kind of work depends on whether you're going to be sitting at a
desk in an office or fixing the roof’. According to this logic, factor
models produce transient descriptions that treat the brain like
housed mercurial systems that have no consistent structure.
They can be changed according to the needs of the psychome-
trician or the exact set of tests that are being applied. This
rationale may be convenient for explaining away the limitations
of psychometric methods (such as PCA and hierarchal factor
analyses of behavioural individual differences). However, it
is clearly flawed on the grounds of neurobiological plausi-
bility; specifically, neuroimaging research has demonstrated
that, like the house in Haier and colleagues' analogy, the brain
has a highly consistent structure of intrinsically connected
functional networks (Cole, Bassett, Power, Braver, & Petersen,
in press; Smith et al., 2009).

By contrast, in Fractionating Human Intelligence we
propose that the commonly reported intrinsic structure of
the human brain underpins distinct axes of human cognitive
abilities. This perspective is supported by a rapidly growing
neuroimaging literature, which has repeatedly reported
highly similar functional brain networks to those in our
original article across a wide range of task contexts (Laird et
al,, 2011). Indeed we have observed the same functional
sub-divisions across diverse task manipulations, when
contrasting clinical populations (Hampshire, Duncan, &
Owen, 2007; Hampshire & Owen, 2006, 2010; Hampshire,
Thompson, Duncan, & Owen, 2011), and they are even
evident in the fluctuations in functional activations during rest
(Dosenbach et al., 2006). That is, the brain is highly structured
and has consistent intrinsic functional connectivity patterns.
Thus, whilst the structure of cognition undoubtedly has different
levels of resolution and, dependent on the perspective offered by
the exact choice of paradigms, may appear to differ in a
behavioural factor analysis, the intrinsic structure of neural
systems that support cognition is relatively consistent. Deriving
a behavioural factor model that captures this intrinsic
structure is of great practical application, because we know
that these functionally distinct sub-regions of the brain are
sensitive to different disorders, genotypes and pharmaco-
logical interventions. Consequently, a neurobiologically
grounded factor model has the potential to provide differ-
ential markers of the functioning of these systems and could
be used to provide a common framework for sub-classifying
clinical populations, benchmarking experimental therapeu-
tics, and translating insights across traditional clinical
domains. A single mixed measure of multiple systems with
ambiguous orientation as advocated by Haier and colleagues
would not be at all well suited for this purpose. Indeed, as is
evident from their comments, deriving a neurobiologically
grounded multifactorial model of cognitive abilities is a
major challenge, and one that they would not have
attempted to address. In Fractionating Human Intelligence,
we sought to derive this model by combing the relative
strengths and weaknesses of neuroimaging and behavioural
data. We argue that these types of data are complementary
as they provide different types of information that relate to
the same underlying cognitive systems. In terms of Haier
and colleagues' house analogy, these methods provide
alternative perspectives that when combined provide a
more accurate picture of the intrinsic architecture of
human cognition.
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3. Point 2: No ‘conceptual confusion’ when comparing
factor models

Haier and colleagues claim that the comparison of factor
models from behavioural and neuroimaging data was
‘conceptually confused’ because only the former focused on
individual differences measures. They suggest that to make
such a comparison at all is ‘questionable’. On the contrary,
whether different components of cognitive ability have
analogs in distinct brain networks is an empirical question
that was central to our hypothesis; consequently we tested
it. This question was critical, because as Haier and colleagues
rightly point out ‘there is no logical reason to conclude that g
is not unitary because two or more brain networks may be
involved'. Indeed we did not suggest otherwise, because
even if intelligence relates to multiple functionally distinct
brain networks, the capacities of those networks could be
highly correlated. We referred to this possibility in terms of
spatially ‘diffuse factors’, or in the words of Haier and
colleagues, factors that may be ‘invisible to the fMRI
technique’. Critically, if individual differences in ability
were driven entirely by spatially diffuse factors, then it
would be highly unlikely that the task-network loadings
and the task-behavioural component loadings would
correlate. That is, the functional sub-divisions observed
within MD cortex would not be evident within the
behavioural individual differences analysis. Consequently,
we tested the hypothesis that there was a relationship
between the neuroimaging and behavioural factor models
using a rigorous combination of correlation analyses and
permutation modelling. The rotated task-component load-
ings were strongly and significantly correlated. Further-
more, the task-network loadings from the neuroimaging
data provided a better predictor of the behavioural data
than all 1000 random permutations. These results were
exceedingly unlikely to have occurred due to chance. In the
original article, we proposed that this relationship could
allow the maximum contribution of diffuse factors to ‘g’ to
be estimated, a suggestion that we will revisit in Point 5.
We also note that this relationship provides relatively
unambiguous evidence in support of our selection of
rotated behavioural factor orientations.

4. Point 3: Relative strength of neuroimaging data

One of the core objections of Haier and colleagues is that we
used ‘factor analysis on brain image voxels to find clusters
interpreted as brain networks’ but that ‘the factor definitions are
arbitrary, as the factors can be rotated in many ways’. They
propose that ‘the unrotated factor, for example, could well be a
neuro-g and it is important to consider that alternative
interpretation’. In fact, we applied independent component
analysis for the bulk of our comparisons between behavioural
and brain imaging data, a method that is based on more
powerful assumptions and that is used widely throughout the
neuroimaging literature. It is also notable, that they do not
dispute the fact that an unrotated factor solution would provide
the largest possible mixture of functional networks. Moreover,
and as discussed above, this mixture would be of no use for the
purposes of probing the intrinsic structure of cognitive abilities.
In fact, in terms of common structure in the behavioural and

neuroimaging data, it should be noted that the first unrotated
component from the MD cortex mask had no significant
correlation with the first unrotated components from the
individual differences data (r = 0.17, p > 0.6); thus, this
unrotated spatial component provides a poor candidate for
neuro-g. More importantly, Haier and colleagues have
overlooked the fact that neuroimaging data have quite
distinct properties relative to behavioural individual dif-
ferences data. We argue that these distinct properties allow
the question of factor orientations to be further disambig-
uated — a point that we covered briefly in the discussion
section of the original article and will be expanded upon
below.

When analysing behavioural individual differences data,
cognitive abilities are, for all intents and purposes, randomly
mixed across individuals. Consequently, the underlying fac-
tors/abilities may only be estimated indirectly using the factor
analysis. This is a poorly posed problem because there are a
vast number of potential orientations that can be applied to
such data and as observed by Haier and colleagues, deciding
which one to use is a ‘judgemental decision’. This is not the case
with neuroimaging data because, as opposed to being random-
ly mixed across space, cognitive systems are organised into
distributed networks that consist of spatially distinct and often
anatomically non-contiguous cortical regions. Multiple De-
mand Cortex (MD) for example, is composed of a number of
distinct sub-regions. These include anterior insula/inferior
frontal opercula (AIFO), inferior frontal sulci (IFS), and the
inferior parietal cortices (IPC). The AIFO are spatially quite
distant from the IFS and are anatomically non-contiguous with
IPC. Furthermore, with imaging data one can measure task vs.
rest, a contrast for which, to our knowledge, there is no
equivalent in behavioural individual differences data. Conse-
quently, it is possible to derive a reasonably direct measure of
the relative levels to which one or other sub-region is recruited
during performance of a task simply by comparing their mean
activation levels during task vs. rest.

These properties can be used to confirm the orientation of
the factor model in an unambiguous manner. For example,
one can ask whether the functional-anatomical sub-regions
from which MD cortex is composed form part of a single,
multiple or higher order functional network simply by
examining the strengths of the correlations in their activation
levels across tasks relative to rest. As can be seen in Table 1,
two fully dissociable networks are evident in our data set
when analysed in this manner. One network includes the
AIFO bilaterally, the other the IFS and IPS bilaterally. There
are strong correlations between all regions within each
network, in several cases approaching unity, and no significant
correlations between networks, in many cases approaching 0.
Notably, when task-rest activations are analysed in this manner,
there is no requirement for rotation of factors (although it is
important to consider that there may be some spatial overlap).
Furthermore, and as reported in the original article, when we
examined task-rest contrasts using ROIs centred within the ICA
networks, we observed that in some task contexts one ROI was
highly active whilst there was little activation in the other
relative to rest, in another context the opposite pattern was
observed, and in others they were strongly co-recruited. This
pattern of results conforms to the qualitative definition of
independent cognitive systems (Henson, 2006), yet the first
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unrotated component would take the greatest possible linear
mixture of the two. Indeed, as discussed above, the AIFO and IFS
networks are one of the most consistent features of the cognitive
neuroscience literature. Few researchers would consider them to
be part of the same functional network. Thus, the unrotated
factor model that is advocated by Haier and colleagues not only
lacks cognitive specificity, it also provides a far less accurate
match for the finer resolution information present in the
behavioural factor model and most importantly, it lacks any
neurobiological plausibility.

5. Point 4: The complicated problem of analysing
individual differences in neuroimaging data

As discussed above, Haier and colleagues have overlooked
the fact that neuroimaging data is better suited to deriving a
mixing matrix; that is, a matrix that describes the levels to which
distinct cognitive systems are recruited during the performances
of different tasks. They suggest applying the same behavioural
individual differences approach when examining the neuroim-
aging data. However, this suggestion reveals a clear inconsisten-
cy in their thinking. Specifically, they state that only limited
insights can be gained by examining the individual differences
that they suggest should have been the focus of the analyses. In
fact our choice of analysis approach was quite deliberate,
because the levels to which networks are typically recruited
may be estimated very reliably with a relatively small set of
individuals; a fact that is demonstrated by the analyses in which
we included each individual's voxelwise data as a discrete set of
12 columns in the PCA. This approach, did not constrain the
same tasks to load on the same components across individuals,
yet the variance in task-component loadings was surprisingly
small as demonstrated in Fig. 1. Thus, our data provided a
demonstrably reliable estimate of the relative levels to which
each network was recruited during performance of the 12 tasks
when analysed at the group level. By contrast, individual
differences analyses of these functional networks, whilst
certainly being of great interest (and the focus of both our past
and ongoing research) are far more complex and unreliable.
Indeed, whilst the question of whether there is a higher order
network or ability is poorly posed for factor analysis of individual
differences in behavioural data, we would argue that it is even
more so for analysis of individual differences in neuroimaging
data. Consequently, any attempt to determine the contributions
to ‘g’ of spatially diffuse factors in this manner would be
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Fig. 1. Reliability of task-component loadings across individuals. When each
individual's voxel-wise data were included in the PCA as a set of 12 columns,
a method that constrains the same voxels to load onto the same components
across individuals; the task-component loadings, which were free to vary
across individuals, were observed to be very reliable. Error bars represent
SEM.

altogether misguided because it would provide an amplified
variant of the single order vs. higher order ambiguity.
Neuroimaging data is noisy, and that noise often corre-
lates across spatial locations within the brain. These correla-
tions in turn produce spatial components that do not have a
neural origin (e.g. due to head movements, temporal drifts in
global signal to noise ratios and spiking artefacts) Haier and
colleagues appear to be unaware of this issue, as they suggest
that the analysis should have focused on the observation
of more than 2 components in three individuals. These
additional components are almost certainly noise-related
and are unlikely, therefore, to contribute to intelligence.
Indeed, the three individuals with more than 2 significant
components did not differ markedly from the rest of the
cohort in terms of performance. Haier and colleagues might
focus on such differences, but they would almost certainly be
attempting to interpret movement related noise artefacts.
The fact that global brain activation magnitudes and
connectivity measures vary across individuals for a range of
reasons that do not have a neural origin, means that any
second order factor derived from individual differences
measures of brain imaging data would be greatly inflated.

Table 1
Correlations between ROI activation levels across tasks show two dissociable networks.
Right AIFO Right IFS Right IPS Left AIFO Left IFS
Right AIFO Pearson correlation Sig. (2-tailed)
Right IFS Pearson correlation Sig. (2-tailed) 0.058
0.859
Right IPS Pearson correlation Sig. (2-tailed) —0.18 .897**
0.576 0
Left AIFO Pearson correlation Sig. (2-tailed) 912** 0.097 —0.174
0 0.764 0.588
Left IFS Pearson correlation Sig. (2-tailed) —0.211 .729** .589* 0
0.509 0.007 0.044 0.999
Left IPS Pearson correlation Sig. (2-tailed) —0.238 .724** .608* —0.038 .978**
0.456 0.008 0.036 0.908 0

Significant correlations highlighted in bold. * p < 0.05; ** p < 0.005.
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This issue is exacerbated further by the fact that the
relationship between individual differences in brain activa-
tion magnitudes (or structure) and abilities is complex,
non-linear and bidirectional in terms of causality. In this
respect we agree with Haier and colleagues when they state
that ‘the brain is a complex electro-chemical organ, with both
temporal and spatial characteristics that function in small
world networks' and that this ‘likely limits the ability of fMRI
(or any single neuroimaging modality for that matter) to
detect any general characteristic underlying cognition that
might be defined as g.’ Consider then, that the capacities of
the functional networks that we observed will undoubtedly
relate to any number of biological variables. For example,
many studies have demonstrated that the brain regions that
support a cognitive process are often more active in those
individuals who have a deficit in that process; for example,
individuals who have suffered multiple concussions
(Hampshire, MacDonald, & Owen, 2013) or who are in the
early stages of dementia (Quiroz et al., 2010). Conversely,
many other studies have reported that the brain regions that
support a cognitive process are less active in individuals who
have a deficit in those processes; for example, individuals
with obsessive-compulsive disorder (Chamberlain et al.,
2008) and attentional deficit hyperactivity disorder (Rubia
et al,, 1999) or who suffer from pathological gambling (Grant
et al., 2013). Moreover, environmental factors affect both
brain structure and function significantly across short and
long time frames (Kempton, et al., 2011; Maguire et al,,
1999). Thus, it is not simply the case that the relationship
between individual differences in neural activity and cogni-
tive ability is non-linear; in fact, the direction of that
relationship can be inverted dependent on the underlying
neurobiological difference and the direction of causality is
ambiguous. As discussed above, correlating individual differ-
ences in measures of an unrotated ‘g’ component with
individual differences in metrics of brain structure or

function provides no information about the intrinsic struc-
ture of human cognitive abilities. Nor does it provide any
insights into the question of whether ‘g’ has a basis in diffuse
neural factors, a specific functional network, or the limita-
tions of behavioural factor analysis methods. For these
reasons we did not attempt to measure individual differences
in network capacities using neuroimaging; instead we
constructed simulations of individual differences based on
the statistically robust task-network loadings from the
group-level neuroimaging data and assumed that the capac-
ities of those cognitive systems had an approximately
Gaussian distribution. This is an approximation, but it is
based on a wealth of scientific support.

6. Point 5: Combining neuroimaging and behavioural data
can provide novel insights into the basis of higher order ‘g’

As observed above, there was a significant relationship
between the rotated task-behavioural component loadings
and the task-functional network loadings. This relationship
allowed us to take an approximate gauge of the likely basis of
the second order ‘g’ factor that can be generated by applying
oblique rotation to the first order behavioural components.
More specifically, we argued that the neural basis of ‘g’ could
have one of three distinct types of source. (1) A dominant
higher order functional network, (for example if the activation
levels of the AIFO and IFS networks were highly correlated
across tasks). (2) The tendency for tasks to be co-recruited, but
to independent (uncorrelated) levels across tasks. This is
essentially the same as blended models from the classic
literature. (3) Diffuse factors that cause the capacities of
dissociable cognitive systems to be correlated and that are
not captured by fMRI.

Consider that the neuroimaging data provides a relatively
unambiguous measure of the levels to which our 12 tasks
co-recruit multiple functionally dissociable networks within
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Fig. 2. The relationship between the mean correlations in simulated network capacities (input) and the mean correlations between the latent variables
(extracted) when applying Principal Axis Factoring with oblique Promax rotation (SPSS 21 — all setting at default). Simulations of behavioural individual
differences were generated using task-network loadings from the neuroimaging data as the mixing matrix and assuming Gaussian distributions of abilities.
Increasing the correlations between the underlying factors generated greater correlations between the extracted components when orthogonal rotation was
applied. The cross component correlations observed in the real behavioural cohort intersected this function at close to 0 in both the 2- and the 3-factor
simulations. Furthermore, when factors correlated at above 0.35, there was only 1 significant component. These results suggest that the higher order ‘g’
component observed in the behavioural data is primarily a consequence of functional brain networks being co-recruited across multiple task contexts.
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the brain (blending/task mixing). We can effectively rule out
(a) because, as discussed above, the networks are spatially
distinct and their activation levels relative to rest are
qualitatively independent (in fact the mixing matrix from
the spatial ICA suggests that the correlation between the
activation levels of networks across tasks is somewhat
negative). Then there is a range of possibilities regarding
the relationship between these networks and the structure of
individual differences in intelligence. At one far end of the
range, there could be no relationship at all. For example, the
capacities of the networks could be at unity due to diffuse
factors, or some other cognitive system that is not visible to
fMRI could contribute heavily to performances. We know
that we are not close to this end of the spectrum because
there is a strong and statistically significant conformity
between the behavioural and neuroimaging factor models.
At the other end of the range, the functional networks could
have completely independent capacities, and there could be
no additional unmeasured general cognitive system. Fig. 2
captures this relationship in the context of the original data.
Simulations of individual differences were generated in
which the capacities of the underlying networks were
correlated to varying levels via loadings on a simulated
higher order ‘g’ factor. As per the original article, simulated
performance matrices were generated by multiplying the
matrices of simulated network capacities (simulated abili-
ties) by the observed matrix of task-network activations,
then adding Gaussian noise scaled by the observed behav-
ioural communalities and a noise level constant. Principal
Axis Factoring was conducted on each simulated perfor-
mance matrix and Promax oblique rotation was applied to
calculate second order correlations. The total variance
explained by the first 3 latent variables was held constant
at the level observed in the real behavioural cohort by
adjusting the noise constant.

As can be seen from Fig. 2, the smallest possible set of second
order correlations is generated when the capacities of the
networks are assumed to be uncorrelated. The greater the
correlation between the network capacities that are input to
the simulation, the stronger the correlation between the
obliquely orientated latent variables that are extracted. Plotting
the mean second order correlations from the equivalent factor
analysis of the real behavioural data provides an estimate of the
level to which network capacities are likely to be correlated.
Here, this value intersects the curve simulated based on the
neuroimaging data remarkably close to 0 on the x-axis. The
same is the case when repeating the simulation with just the
first two (MD) networks. Thus, when the tendency for tasks to
co-recruit multiple independent functional brain networks is
considered, the results of the behavioural factor model support
the view that the capacities of those networks are largely
independent.

A secondary but important point is that at this level of
mixing, only 1 significant latent variable (using the Kaiser
convention) would be observed if correlations in network
capacity are >0.35; however, three significant variables are
evident in the real behavioural data. The conformity between
imaging and behavioural factor models, the placement of the
behavioural higher order correlations on the simulated curve,
and the number of significant latent variables, provide
converging evidence in support of the view that the

functional network capacities are largely independent. We
note that adding an extra ‘general’ network has the same
effect as increasing the correlations, as does lowering the
overall baseline relative to which the task-network loadings
are calculated.

We re-emphasise that the above analyses are intended to
provide an approximation based on the (widely held) assump-
tion that the capacities of cognitive systems tend to follow a
Gaussian distribution across individuals. This distribution of
capacities across individuals could have any number of biological
contributors and we did not attempt to measure them with
neuroimaging in the context of this analysis for the reasons
outlined in Point 4. These simulations clearly demonstrate how
the ‘g’ factor that is calculated by hierarchical factor analysis is at
the very least, greatly inflated due to blending/task mixing. They
also provide a strong indication that diffuse factors are likely to
make a relatively small contribution to ‘g’.

7. Summary

Contrary to the claims of Haier and colleagues, their P-FIT
model and the 3-factor model reported in Fractionating Human
Intelligence pursue quite distinct hypotheses. Most notably, our
hypothesis considers that there is a ‘ground truth’ structure to
human cognitive abilities that has a basis in intrinsic functional
networks and seeks to derive that structure by combining the
relative strengths and weaknesses of behavioural and neuroim-
aging data. Specifically, we propose that the issue of ambiguous
behavioural factor orientations is rendered more tractable in the
context of group-level neuroimaging data, due to the manner in
which cognitive systems are organised, as opposed to randomly
mixed across the brain. Conversely, we note that individual
differences analyses of brain imaging data are complex and
plagued by the issues of global noise related components that
have a non-neural and therefore, non-intelligence related origin.
When combined, neuroimaging and behavioural data may
be used to determine whether behavioural components
correspond to the contributions of spatially distinct func-
tional brain networks and to constrain their orientations
accordingly. They may also be used to estimate the relative
scale of the contributions of factors that are not captured by
the neuroimaging model but that do contribute to behavioural
individual differences.

In contrast, and as demonstrated by the comments of
Haier and colleagues, P-FIT considers the derivation of an
intrinsic model of human cognition to be intractable; indeed,
they appear to argue that there is no point in identifying
such intrinsic structure, although their analogy suggests that
they may believe that it exists. In this respect, P-FIT treats
neuroimaging as a simple exercise in phrenology, whereby a
poorly defined cognitive construct, consisting of an arbitrary
and heterogeneous mixture of abilities, is mapped onto a
general set of locations in the brain, with no consideration of the
underlying functional organisation of the cognitive systems
housed therein. This approach fails to provide any insights into
the intrinsic architecture of human intelligence and has limited
application for providing behavioural markers of the functional
brain networks that support distinct aspects of cognition.

One might argue that the exact numbers and orientations
derived in Fractionating Human Intelligence will change
somewhat in a larger neuroimaging sample, or that the model
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may vary significantly dependent on the exact population
sub-sample or imaging method that is applied. We do not
believe that such variations will be of particularly great
magnitude because the observed networks are such a consistent
feature across individuals and across the neuroimaging literature
as a whole. More likely, it will be the case that additional axes of
behavioural ability, which were not dissociable in the context of
our battery of tests, will be related to additional functional
networks within the brain. Similarly, the components from
which these networks are composed and their interactions
within the temporal domain will likely relate to a finer resolution
set of factors. Nonetheless, these are empirical question for
future research, which we are actively pursuing at present.
Either way, if we are ever going to understand the neurobiolog-
ical basis of general intelligence, it will be necessary to leverage
the relative strengths and weaknesses of both behavioural and
neuroimaging data, as opposed to simply imposing the limita-
tions of one upon the other.

Appendix A. Secondary points

Haier and colleagues make a number of less substantial
comments, many of which are dealt within the original article.
They state that ‘Habituation to repeated stimuli during testing
depresses activations and subtraction of activation from a resting
baseline may not be optimal for finding a common general brain
factor involving intelligent performance.” However, we explicitly
examined the effects of task familiarity (which as we report
elsewhere can be pronounced in some study designs
(Erika-Florence, Leech, & Hampshire, in press)) and, as reported
in the original article, observed no significant effects. This is likely
to be because all of our tests were brief and demanding. No doubt
pronounced learning effects would have been evident over a
longer time frame.

They also request further details about the whole brain
analysis and imply that we should have focused on the P-FIT
regions defined by Haier and colleagues as opposed to
Multiple Demand Cortex as defined by Duncan et al. There
have been many studies that demonstrate that multiple
brain regions are critical for intelligence. These typically vary
around a frontoparietal theme, with MD regions forming the

Table 2
PCA of the whole brain.

strongest candidate (Duncan, 2001, 2005, 2006; Duncan &
Owen, 2000; Duncan et al., 2000; Woolgar et al., 2010).
Consequently, focusing on the MD brain regions that are
known to relate to general intelligence is an appropriate,
hypothesis-driven strategy that was uncontested by any of
the formal Reviewers of the paper. MD was preferred in part
because it is a functionally defined mask; we note that P-FIT
appears to utilise the cytoarchitectonic parcellation of the
brain provided by Brodmann areas. As discussed in the main
response, it is well established that functional subdivisions
within the brain do not map at all well onto cytoarchitecture.
We also note that whole brain analysis in this case would be
somewhat inappropriate for our purposes, because it would
include systems that are known to be involved in other
domains that are not considered akin to intelligence, but
that would be recruited during performance of all 12 tasks;
for example, motor control and early visual processing. In
any case, the original article reported analyses conducted
with ROIs at a wide range of different scales — as requested
by one of the formal Reviewers. These analyses demonstrat-
ed that the factor model was robust against the exact
selection of ROIs, which is un-surprising given the reliable
nature of blind source localization methods when presented
with different sub-sets of the same data. Nonetheless, the
first 3 PCA components from an analysis of all active voxels
within the brain is reported in Table 2 and can be seen to
conform very closely with the task-network loadings from the
behavioural cohort (all r > 0.8, p < 0.001). We note that by
contrast, the first unrotated components from the behav-
ioural and whole brain analyses do not correlate signifi-
cantly (r = 0.38, p = 0.218). Consequently, the unrotated
factor from the neuroimaging data provides a poorer
candidate for neuro-g.

Finally, Haier and colleagues argue that a number of relevant
studies (including P-FIT) were not referenced in our original
article. However, Fractionating Human Intelligence was a research
article, not a review. The intelligence literature is vast and
stretches back more than 100 years. We selected just those
articles that we considered to be most relevant to the questions
addressed, but concede that many other relevant articles could
have been cited.

Rotated 3 factor solutions

Behavioural FMRI

1 (STM) 2 (reasoning) 3 (verbal) 2 (STM) 1 (reasoning) 3 (verbal)
Spatial span 0.69 0.22 0.05 0.77 0.40 0.27
Digit span 0.26 —0.20 0.71 0.45 0.09 0.83
Spatial rotation 0.14 0.66 0.08 0.49 0.84 0.16
Feature match 0.15 0.57 0.22 0.37 0.87 0.18
Verbal reasoning 0.05 0.33 0.66 0.09 0.78 0.55
Visuospatial working memory 0.69 0.21 0.07 0.78 0.48 0.28
Paired associates 0.58 —0.04 0.25 0.58 0.61 041
Spatial planning 0.41 0.45 0.00 0.63 0.61 033
Deductive reasoning 0.19 0.52 —0.14 0.36 0.89 0.12
Colour word remapping 0.22 0.35 0.51 0.30 0.48 0.77
Self ordered search 0.62 0.16 0.16 0.78 0.25 049
Interlocking polygons 0.00 0.54 0.30 0.37 0.77 0.33
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