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With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When
the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow
well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has
been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models
which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing
fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization
and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can
also highlight the strategy used to process and organize large amount of information traveling between the different modules. How
the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with
disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global
or integrated behavior can emerge from local and modular interactions.

1. Introduction

Despite decades of research focusing on network based brain
activities, the anatomical structure of the observed brain
networks and the functional aspects of spatiotemporal brain
dynamics remain mysterious [1]. Several recent functional
magnetic resonance imaging (fMRI) studies on the wakeful
resting brain have showed the existence of different brain
networks—resting-state networks (RSNs), for example, the
default mode network (DMN), salience network (SN), audi-
tory network (AN), three distinct visual networks (VN),
sensorimotor network (SMN), and left and right executive

control (ECN), which are considered to be unperturbed,
nonstimulated functional networks, which at baseline activity
are performing complex cognitive tasks [2-6]. The balance
between segregation and integration of well-segmented and
separated brain regions is essential for efficient informa-
tion processing and rapid information transfer within and
between the networks [7, 8]. A human brain consists of
around 100 billion neurons, and each of these neurons forms
approximately 1000 trillion electrical as well as chemical
synaptic and nonsynaptic connections with other neurons in
a brain network [9]. As a result, the importance of studying
neurobiological implications of the complex neural wiring
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Function versus Structure

FIGURE 1: Default mode network in a healthy control as extracted
from resting state functional magnetic resonance imaging using
independent component analysis and the fibers reconstructed using
a tractography technique applied to diffusion tensor imaging data
and subsequently filtered by the regions functionally connected in
the default mode network.

structure of these aforementioned functional networks has
always been proven to be critical. The state of the art in
neuroimaging techniques is already offering us the possibility
to assess structural and functional connectivity of these brain
networks. However, there is still a gap in finding more
convincing structure-function relationships that could be
predicted by the optimal neural activity in the network. This
limits our current understanding of the mechanisms govern-
ing the base of emergent spatiotemporal brain dynamics, and
their relation to complex evolutionary cognitive assessments
of brain networks [10].

Starting from the Hodgkin-Huxley conductance-based
model [11], the field of computational neuroscience has
been playing a significant role in replicating the functional
characteristics of spontaneous neuronal activity from the
modular brain network [12-16]. This could provide new
insights into network dynamics along with the advancement
of neuroimaging experiments [17-20]. Neuroimaging obser-
vations are strongly supporting a relationship between the
structural architecture of the brain and its functional net-
working (see Figure 1 as an example for the DMN functional
pattern and its structural support) [21-23]. The emergence
of spontaneous network dynamics in the resting brain was
simulated from the heterogeneous structural connectivity of
the human brain and then compared with the spatiotem-
poral dynamics of BOLD low-frequency signals during rest
[19]. In their study, oscillatory neural populations were
found to be synchronized through the phase dynamics of
coupled oscillators in a generalized Kuramoto model. This
synchronization model could offer a detailed comparison of
functional networks among the structural connectivity. With
increasing global coupling strength of oscillators, clusters of
oscillator nodes progressively integrate to form larger clusters
with positive and negative correlations between them, and the
corresponding network dynamics exhibit a phase transition
from a desynchronized phase to a partially synchronized
phase. In contrast to homogeneous or randomly coupled
networks, the transition from a partially synchronized to
a fully synchronized phase was found to be less probable
due to the role of possible delay in transmission in the
resting brain network. Despite this, a good agreement of
“emergent” properties between simulated functional con-
nectivity and empirical functional connectivity was demon-
strated through the measurement of individual seed-based
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correlation in RSNs. Mechanisms behind cluster formations
(or integration), intra- and inter-regional interactions, and
the emergence of intercluster correlations/anticorrelations
remain unexplored [19, 22]. Their studies suggest the need
for more computational modeling-based research on the
structure-function dependencies in brain networks.

In the context of the complex structure-function relation-
ships in the brain network, self-organized neural dynamics
have been shown to exhibit random behaviour which can
become very similar to systems studied in statistical physics
(e.g., the Ising model) [24-26]. In the past, neural dynamics
in the resting brain had been considered as quasistationary
states without introducing the structural information and
without a direct correspondence between lattice size and
brain positions [12, 27]. In order to investigate dynamics
of the resting brain, a collective phenomenon based 2-
dimensional (2D) Ising model was simulated numerically
at different temperatures [18, 28]. Their simulated results
allow an assessment of the cooperative emergent properties
and the universality classes of network dynamics [18, 20,
27] as well as the biological plausibility of RSNs [2]. Under
these mechanisms, the collective spin dynamics exhibit long-
range spatiotemporal correlations with second order phase
transitions between ordered and disordered magnetic states
at the critical temperature [12, 29]. Compared to subcritical
(T < T,) and supercritical (' > T,) temperature regions,
their simulated results at this critical point highlighted a
balance between positive and negative correlated networks
and were comparable with the correlation and anticorrelation
obtained from resting state fMRI. The universal mechanisms
underlying the spontaneous emergent phenomena of the 2D
Ising model can explain self-organized criticality of neural
dynamics in large scale RSNs [28, 30]. Functional activation
patterns of neural networks largely depend on the underlying
structure of fiber pathways connecting all regions of the
cortical and subcortical brain area [23, 31]. In a recent study
[32], the functional neural activity of resting brain net-
works was also simulated from the generalized Ising model,
replacing equal spin coupling with the structural network
of the human connectome. The structural based collective
neural dynamics were able to explain correlation-based
networks that were comparable with the RSNs extracted
from fMRI. Their findings confirmed that the second order
phase transition and self-organized criticality of the 2D Ising
model at critical temperature [27] might not be enough to
explain the complex organization of information transfer in
resting brain networks. This raises more puzzling questions
about functional RSNs in various conditions including the
involvement of cognitive tasks on the resting brain or altered
states of consciousness like physiological (sleep), pharma-
cological (anesthesia), and pathophysiological (disorder of
consciousness) states of brain networks [33].

In addition to the aforementioned Kuramoto model
of coupled oscillators and Ising model of magnetization,
Honey et al. presented a neuronal mass model based analysis
that could predict the functional connectivity from the
human anatomical structure [21]. Following conductance-
based neuronal dynamics, the neural mass model simulates a
population of highly interconnected excitatory and inhibitory
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neurons. Three dynamic variables (membrane potential of
pyramidal cells, average number of open potassium channels,
and inhibitory interneurons) are used to describe the time-
course of local field potentials for a neuron mass. Each mass
represents a node of cortex, which is interconnected to other
nodes through the structural connectivity matrix via the
mean firing rate. Along with these variables there are multiple
microscopic quantities (ion channel conductance, fraction of
channels open, and the ratio of NMDA to AMPA receptors),
being used to describe the dynamics of neural masses. The
number of intraconnected neurons, as well as the net effect of
these microscopic constants, remain unknown for each node.
There is an additional fitting parameter describing the exci-
tatory coupling between nodes in the network. Utilizing all
parameters, global resting brain dynamics are modelled and
compared with empirical results [21, 34, 35]. In comparison,
the Ising model uses one parameter, temperature, to simulate
global brain activity. More research on the Ising model, taking
into account the structural and functional interrelationships
seen in the neural mass model, could resolve many unknowns
in large-scale brain networks.

Modern neuroimaging techniques like fMRI and dif-
fusion tensor imaging (DTI), along with methodological
advances in both spatial pattern detection and anatomical
tracing, has made it possible to extract the functional patterns
and the structures of neuroanatomical circuitry at different
spatial scales [36-38]. With the development of graph theory,
we have witnessed an unprecedented growth of applications
to understand the structural and functional complexity of the
human brain connectome [39] due to its relative simplicity,
highly generalized, and easily interpretable nature. In a
graph, structural (i.e., synaptic, axonal, and dendritic) and
functional (i.e., spontaneous or evoked neuronal response
based dynamic interactions) network connectivity of brains
is typically represented by a set of nodes which carries
neuronal information at the scale of interest and a set
of edges that represents either functional relationships or
structural connections among individual nodes [10, 40, 41].
Correlated nodes in patches of the cortex (gray matter)
were used to demonstrate dynamic interaction of neural
circuitry, in which functionally clustered regions of small-
world networks were governed by specific features, for exam-
ple, high clustering, small path length, high efficiency, and
repeated network motifs in a particular class [42, 43]. In
the Watts-Strogatz model, probability of increasing rewiring
demonstrates the transition of a random network from a
periodic ring shaped lattice of the small-world topology
[44]. Several pathological states of brain networks were also
investigated, in which any disturbance of structural connec-
tivity in neural networks could increase the probability of
rewiring and reduce the functionally organized brain activity,
for example, the Erdds-Rényi type networking [34, 45-47].
Based on anatomical connectivity patterns and physiological
interactions of neurons in mammalian brains, a statistical
model of canonical microcircuits was able to describe cortical
dynamics dependent on the large-scale “average connectiv-
ity” [14, 48]. The linked long-range projections in this model
demonstrated nonrandom coherent features and large-scale
spatiotemporal organizations of complex brain functionality.

Recently, an electroencephalogram (EEG) study providing a
high temporal resolution has been performed on large-scale
network dynamics to investigate the loss of consciousness and
cognitive deficits in patients with disorders of consciousness
(DOC) after severe brain injury. This study provides informa-
tion about further diagnosis and physiological mechanisms
[49]. In large-scale brain networks, however, nodes keep
being defined a priori, which is not always justified due to
the limitation in sensitivity of detecting complex axonal fiber
architecture [49, 50] and also due to the lack of appropriate
parcellation procedures in order to establish short- and long-
range functional relationships among highly coherent brain
regions [51, 52].

The performance of self-organized criticality, and its
relation to efficient information processing in conscious
brains, is solely determined by maintaining an optimal bal-
ance between axonal lengths and synaptic costs in neuronal
circuitry [53]. Axonal wiring cost is considered as the source
of functional integration, which is mostly spent forming long-
range communications among spatially distant brain regions.
On the other hand, the strength of short-ranged intraregional
connectivity is improved with an increase of synaptic costs,
implying a segregation effect on global dynamic patterns.
There are also other factors, for example, the metabolic
cost, glia cells, and myelination that play a role in neuronal
communications. According to the economic principle of the
brain, minimizing wiring and metabolic energy costs results
in a more “profitable” and efficient tradeoft between wiring
costs and the maximum structural and/or functional con-
nectivity among spatially distinct brain regions. Balancing
neuronal communication cost and highly conserved global
connectome organization, the functional network topology
in the healthy human brain demonstrates small-worldness
[45]. The computational efficiency and functional integration
of this type of brain network lie in the intermediate regime
between the lattice-type topological networking (efficiency =
low, cost = low) and random networking (efficiency = high,
cost = high) [54]. Series of earlier fMRI studies on the
anaesthetized human and monkey brains demonstrated a
breakdown of cortical and subcortical functional connec-
tivity in all resting networks when subjects were in a state
of anesthesia-induced loss of consciousness [55-58]. This
effect on functional connectivity altered intra- and inter-
cortical connectivity, preventing the efficiency of information
flow that was present in the small-world network of wakeful
healthy brains. Their findings on imbalanced functional con-
nectivity in the segmented cortical network also highlighted
the requirement of maintaining the economic principle in
order to perform the active cross-modal functional interac-
tions during network communications.

In this paper, we focus on reviewing the functional
organization of brain dynamics and its underlying structure-
function relationship in a wakeful and conscious resting
brain, followed by a brief discussion of its alterations under
pharmacological and pathological states of consciousness
[33]. Recent work on the Ising model and graph theory is
explored to help understanding the global and local organi-
zation of brain communication at a spatiotemporal scale [20,
32, 59, 60] and its structural-functional interdependencies.



Comparing both theoretical insights and fMRI empirical
results, the notion of criticality, metastability, and phase tran-
sitions in self-organized brain dynamics are demonstrated,
taking into account the emergence of macrostates under
cooperative processes [13, 61].

2. Ising Model and Its Application
to Brain Dynamics

The Ising model of ferromagnetism was firstly introduced by
Ernst Ising in 1925 as a statistical model of ferromagnetism
[62]. A 2D square lattice version was further explored to
explain the existence of ferro/paramagnetic transitions and
was exactly solved in statistical physics by Onsager in 1944
[63]. Essentially, the model consists of discrete magnetic
moments with their spins s; = +1 pointing upward and
s; = —1 pointing in downward directions. In the brain, local
increase (or decrease) in BOLD activity from its baseline
could also be represented by “+1” (or “~1”) spin state [18, 64].
According to the model, each of these spins has the tendency
to align with its neighbours in the square lattice through the
nearest-neighbour, interaction energy, or coupling constant
Jij- In the absence of any external field, the energy of a state ¢
is expressed by E(t) = —(1/2) Z<i)j> ]i-sis]-,where (i, j) denotes
the nearest neighbour interaction between nodes i and j.
Furthermore, the strength of interactions always competes
against the effect of the temperature of the thermal bath
with which the spin lattice is in contact. According to the
formalism of statistical physics [65], the probability of finding
the system in a configuration ¢ is P(t) = exp[-E(t)/kT]/z.
Here z = Y e W/ js called the partition function, k is
the Boltzman constant, and T is the temperature. E measures
the integrated energy of a spin configuration, in which the
interaction between spins wants to minimize which can be
used to quantify the global spin organization. kT instead
measures the kinetic energy randomly transferred between
the thermal bath and the spin lattice, which produces the
segregation effect in spin clusters. Numerical approaches have
been developed to simulate the dynamics of an Ising model.
The combination of Metropolis algorithm and classical
Monte Carlo simulation with periodic boundary conditions
establishes the thermalization procedure of magnetic spins
when the system is placed in touch with a heat bath of
temperature T' [66]. With increasing T, the spontaneous
fluctuation of Ising spins increases. When the temperature
reaches a certain critical value (T.), there is a qualitative
change in the organization of the spin clusters as a whole, and
the correlation length between neighbouring spins within
the cluster (which captures the size of the formed clusters)
diverges. The outcome of spin organizations from a 2D Ising
model simulation at three different T values is presented in
Figure 2 after being projected on a 1015 parcellation of the
brain [67] (notice that the relation between physical position
in the brain and the 2D lattice is completely arbitrary, even if
nearest neighbour interaction distribution is maintained).
At low T, the spontaneous Monte Carlo spin flips are
less probable, and spins in a given configuration are mostly
aligned to contribute the minimum energy or ground state
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Projected Ising model

T<T,.

FIGUre 2: Three different 2D Ising model configurations after
thermalization for, respectively, T < T, T = T, and T > T..
A 32 x 32 square lattice configuration has been projected on a
1015 parcellated brain keeping the nearest neighbour interaction
structure.

energy of the system. A quantity called the magnetization,
which is the average of total spins over the whole lattice,
determines the magnetic ordering of the system, that is,
its ferromagnetic behaviour. When all spins are aligned
along the same direction, a magnetization of magnitude
“+1” or “~1” will be generated corresponding to a complete
order configuration. The large amount of integrated magnetic
ordering in this low temperature regime is accompanied by a
small information content of the organized spin clusters. At
high T, the magnetic ordering is completely lost due to signif-
icantly increasing number of spontaneous spin flips and the
magnetization tends to “0,” which can be used to characterize
the paramagnetic phase. In this case, a large number of laws
of nature do not hold due to spontaneous symmetry breaking
under global spin flips, and this disordered phase can be seen
as the result of the dominating segregation effect over the
cluster integration [66]. The information content is very high,
in this case, but without integration. For the intermediate
regime of T, the self-organized criticality, as well as a second
order phase transition, are observed in the 2D Ising model
through the maximum fluctuation in the magnetization and
the susceptibility peak when T reaches a critical value T, [18].
In this case, a balance between integration and segregation
effects is recognized and revealed by the divergence of
the correlation length through the formation of long-range
ordering within the correlated functional networks of spin
clusters. The global ordering of magnetization is preserved
in the T < T, regime and is destroyed above the critical
temperature T.. In Figure 3, four different states of 2D spin
configurations are shown for T < T, T = T,,and T > T..
These four different configurations correspond to the same
four different time points at three different temperatures. Due
to its simplicity of simulating two state spin systems and the
richness of its dynamic behaviour in self-organized criticality,
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Ising dynamics

t =100

t =150

FIGURE 3: Dynamics of a 2D Ising model with lattice size 32 x 32 after thermalization. For the three different temperatures T < T,, T = T,, and
T > T, the Ising model is simulated generating 150 time data points. Each time point corresponds to a new configuration in which all spins
have been tested for flip through the Metropolis algorithm. Configurations of the same four time points are reported for the three different

temperatures.

the Ising model has been demonstrating unprecedented
growth of applications in physics as in many other fields,
including computational neuroscience [18, 28, 30].

In neuroscience, electrophysiological brain activity in the
presence or absence of sensory stimulation can be described
by two states: (1) active states in which randomly generated
neuronal action potentials collectively process information
and provide neuronal communications with each other
via functional networking and (2) inactive states in which
neurons do not cross the threshold value to fire action
potentials [12]. In the brain at rest, when a large number
of neurons are functionally connected with each other, the
resultant interaction of all other neurons on a given neuron
can always be considered as its single averaged form [68, 69].
This situation can often be realized in the mean field theory,
in which an effective interaction (e.g., exchange coupling
in the Ising model) substitutes the many body interactions,
involving the long-range ordering in the functional network
[64, 70]. Reduction of many degrees of freedom in neural
dynamics can therefore be simplified in an asymptotic form
that results as the emergence of activated functional patterns
[71]. The stability of these synchronous dynamic patterns
in a network represents a neuronal firing state based on
cooperative activity. In addition to four different spin con-
figurations at the critical temperature (7,), mean functional
organizations of neural dynamics, sampled at four different
times and based on the resting state fMRI of 14 healthy

subjects is shown in Figure 4. The baseline for the fMRI signal
has been separately calculated for each parcellated region as
the mean of the time-course for that region. All values above
(or below) the baseline are represented in “Red” (or “Blue”).

Series of earlier studies on fMRI, multielectrode local
field potential (LFP), and magnetoencephalography (MEG)
[72] profoundly highlighted the spontaneous emergence of
cortical and sub-cortical resting brain activity in human
and non-human primates [73]. In their analyses, collective
functional organization of RSNs were found to be very similar
to the emergence of simulated organizations poised in 2D
Ising model near the critical temperature (see previous sec-
tion). Along with the simulated spatiotemporal brain activity
near or at the critical point, brain functionality in RSNs
encountered the maximization of information processing,
taking into account the input sensitivity and dynamic range
of activity patterns [26, 73]. Besides prominent matching of
the long-range correlations in large-scale cortical networks,
power law behaviour with a slope value —3/2 (represents the
fractal dimension) and neuronal avalanches in small-scale
networks were indicated in empirical and simulated data of
the resting brain [18, 74].

In addition to this earlier work, there has been consider-
able growing attention on simulating the brain dynamics and
its relation to self-organized criticality using the structure of
human connectome from the DTT based measurements [32].
The fiber distributions between each pair of cortex parcellated
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Digitalized fMRI dynamics

FIGURE 4: Simulated and functional imaging maps generated for four different time points. (a) shows the equilibrium spin configurations at
T = T..In (b), digital maps are created by setting a threshold as the baseline value of the BOLD time course for each corresponding parcellated
region. Red corresponds to a value of above baseline (or spin “+1”) and blue below (or spin “~1”). Maps are created after averaging BOLD

signal over 14 healthy subjects.

regions could be in fact used as the input for the coupling
J;j between spin i and spin j in a generalized Ising model.
In this way, all nodes including left and right hemispheres
are interacting with each other, implying that any spin sees
all the other spins as nearest neighbor even if with different
couplings. Recently, a study on simulating the resting func-
tional activity in monkeys and humans [73, 75] attempted
to emphasize the finite size, scaling, and universality of
brain dynamics. Along with the measurement of maximum
information processing at criticality, their calculations on
T, (not in line with earlier findings) as well as critical
exponents of magnetization, specific heat and susceptibility,
could explore collective brain activities in different spatial
scales [75]. In the next section, functional organizations of
spontaneous brain activity will be reviewed in the light of
dynamic phase transitions, while the phenomena of self-
organized criticality and metastability will help to charac-
terize the similar behaviour of organized activity patterns
observed in the empirical data [72, 76].

3. Self-Organized Criticality, Phase Transition,
and Metastability in Brain Networks

Criticality in any dynamic system, including the brain, can
be characterized by a threshold that describes the boundary

of phase transition between ordered and disordered patterns.
In order to understand experimental findings of human
functional brain activity, for example, the resting state fMRI,
a large number of interacting spin systems has been mod-
eled successfully as self-organized criticality [77]. Recently,
the correlation networks of resting state fMRI data were
compared with the correlation matrix of a 2D Ising model
at different temperatures, in which spins were connected
with the short ranged nearest-neighbour interactions [28].
In the Ising model, the self-organized dynamic patterns
are formed through the spontaneous fluctuation of random
spins, reducing degrees of freedom through non-linear inter-
actions among functional units of spin clusters [65]. These
functional units are characterized by reduced degrees of
freedom and are represented by order parameters (e.g., the
magnetization) [66]. With increasing T, the spontaneous
fluctuation of spin-flips increases, and at critical temperature
the dynamic phase transition replicates the long-range order-
ing in the spin dynamics. This effect of long-range ordering
can provide the maximum information flow, which is reduced
down abruptly either in the phase of ordered (T < T,
in subcritical phase) or completely disordered (T > T, in
supercritical phase) spin states. This has been considered as
the self-organized criticality of a 2D Ising model, in which
the maximum occurrence of metastable states [76] can mimic
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almost all fascinating properties in the wakeful resting brain.
Self-organization in the resting brain is also the result of
spontaneous neural dynamics that have shown features such
as metastability in order to explain the efficient information
processing in the network. It is only in the critical regime
of the Ising model that we can retain these properties and
simulate brain functionality effectively [13, 20, 73].

Starting from Turing instabilities in dynamical systems
(1950), it has been shown that macrostates of brain wave
oscillations can be formed out of cooperative processes, insta-
bilities, rapid transitions between coherent states, pattern
formations, and so forth [13, 78]. Due to the variability of
synaptic couplings among large groups of neurons in an
input-output based brain network, the ability to process and
transfer information depends solely on integrating several
functional counter-parts of the neural circuits of cortical and
subcortical structures [79]. Taking into account the coopera-
tion and competition in spontaneous neuronal oscillations,
the basis of conscious brain activity lies in the state of
metastability [80]. The dynamic states of brain oscillations lie
in far-from-equilibrium regions, but it stabilizes over a long
time period, explaining the ability to perform brain activities
out of many random inputs from the external world [81]. The
emergence of simulated spin dynamics in the Ising model
and brain dynamics in level of consciousness, exhibit features
of dynamic transitions between metastable states [18, 76].
Due to the limitation on appropriate fiber-tract modeling,
the structural connectivity used in current neuroscience
research seemed to overlook long-range projections and
the polarization of fiber tracts. Insufficient information on
the anatomical structure of the brain limits the current
findings of simulated brain activity with the Ising model.
Further research on fiber-tract connectivity in brain networks
will improve simulations of self-organized criticality and
metastability of functional brain activity. This will lead to
a better understanding of complex brain phenomena such
as cognition or generating consciousness. While simulating
the Ising model provided the opportunity to characterize
the structure-function relationship in emergence of compli-
cated brain organizations, the research on graph theoretical
approaches (see next section) could offer a better insight
to understand the information traffic, and the integration
properties of the network.

4. A Brief Review of Graph Theory

4.1. Current Progress on Graph Theory. Initial approaches of
the network structures based on graph theory have devel-
oped a growing interest among the researchers involved in
investigating the neuronal systems of the brain. Graph theory
is providing a simplified and more generalized approach
to studying the complex neuronal structures (e.g., Brain
network) in neuroscience [82]. Furthermore, it has been
proposed that the structure of the global brain network
enhances the interaction between the segregation and inte-
gration of functionally specialized areas in the brain [83].
Even though the functional networks are restrained by the
limitations of the structural connections, context-sensitive

integration during cognition tasks necessarily requires a
divergence between structural and functional networks. This
essential idea is well explained by the “small-world” networks
in graph theory which deals with highly clustered, yet globally
interconnected networks [84]. The higher the clustering,
the greater is the ability of being connected with groups of
neurons in the brain network, resulting in network hubs.
Thus, it describes the strong functional organization of the
brain network and it is also evident in networks which have
been extracted in resting state fMRI [84]. In addition, such
networks have been described in cortical structure [42, 85]
and in EEG and MEG (magnetoencephalogram) studies.
Therefore, it is important to compare the parallel behaviour
of the organization of functional and structural neuronal
anatomy in the brain, and the complex networks of graph
theory.

4.2. Fundamentals of Graph Theory. Graph theory is an
outstanding basis from which to study the functional and
anatomical connections in the brain. A graph related to the
brain network is a model of the neurons or group of neurons
in patches of cortex (nodes/vertices in graph theoretical
nomenclature) which are interconnected by a set of edges.
The edges represent functional or structural connections
between cortical and subcortical regional nodes based on
analysis of human neuroimaging data [39]. Nodes in large
scale brain networks usually represent brain regions, whereas
the edges represent anatomical, effective or functional con-
nections. In a graph, the number of connections a node has is
called degree k [86]. The distribution of the degree P(k) gives
the information about the fraction of nodes having k number
of edges and is, therefore, the probability distribution of the
degree over the whole network. Clustering coeflicient of a
graph is another commonly used characteristic which gives
the ratio of the number of existing connections to the number
of all possible connections [44, 87], whereas the characteristic
path length is the average of the shortest path lengths between
the nodes. In addition, the global efficiency gives the inverse
of the harmonic mean of the minimum path length, between
each pair of nodes [88-90] and it indicates the amount
of traffic that the network can handle. The local efficiency
indicates a measure of the fault tolerance of the network [88]
which gives information about handling traffic by each node
in the network. In another perspective, efficiency is a useful
network measure, which can be used to distinguish between
highly active networks or otherwise. Moreover, the strength
of divisions of a network in clusters is given by the modularity
[91]. High modularity could establish strong connectivity of
nodes within clusters and sparse connectivity between nodes
of different clusters in the network. The complex networks,
which are fundamentally characterized by these network
metrics, are complex not only by the means of the size of
the network, but also due to the interaction architecture and
dynamics of the network [92].

The networks have been classified, according to their
topology, under three categories designated random net-
work, small-world network, and scale-free network. Random
graphs can be constructed by assigning connections between



pairs of nodes with uniform probability. For most of the com-
plex network systems, a random network is a poor estimate.
The probability distribution of the degree of a random graph
follows a normal distribution as the connections are made
randomly between the nodes [92]. The clustering coeflicient
of random graphs is much smaller compared to that of scale-
free and small-world networks. On the other hand, the small-
world network is highly clustered yet comprises a smaller
characteristic path length compared to random networks
[44]. Small-world networks maintain a balance between net-
work segregation and integration, providing a high global and
local efficiency of information transfer between nodes of a
network [39]. In scale free networks, the nodes are connected
in a way that there are few nodes which have very many
connections, and many nodes which have few connections
[92] implying low efficiency. This is in contrast to with small-
world networks where the efficiency is comparatively high,
supporting high information transfer between the nodes. On
the other hand, the low efficiency of the scale free networks
will give the impression of mostly unconnected network
structures as well [93]. Although this characterization among
the network structures is common, in relation to brain
dynamics, a brain network can also be characterized with
respect to its regional anatomical connectivity.

4.3. Types of Topological Connectivity. Topological connectiv-
ity of the brain may characterize different features of dynamic
organization. This organization can be expressed by weighted
or unweighted graphs. In weighted graphs, nodes represent
the regions of interest and edges encode the strength of
their correlation (functional) or the density of the fibers con-
necting them (anatomical) [94], while in unweighted graphs
edges only represent the presence of connectivity exceeding
a specific threshold. However, this binarization does not
provide any information on important differences between
weak and strong connections. For specific metrics such as
the characteristic path length, the strength of connection is
critical for interpretation since it determines the functional
distance of connectivity, which is important to character-
ize long-distance shortcuts. By comparing functional and
anatomical connectivity, a broader understanding of the way
the brain functions with respect to its structural connectivity
can be gained.

4.3.1. Anatomical Connectivity. Anatomical/Structural con-
nectivity between cortical regions of the brain is represented
by the connections of axonal fibers. It ranges from inter-
neuronal connectivity to inter-regional connectivity in the
brain [10]. In MRI analysis, the anatomical connectivity is
being tracked using DTI data. Graph theory offers a quan-
titative description of the anatomical patterns by producing
a graph for the anatomical network of the brain. Mapping
the anatomical connections of the human brain using graph
theory has revealed small-world attributes with local clusters
of brain regions [10]. This pattern of finding indicates that the
structural organization of the brain demonstrates the most
efficient type of network.
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4.3.2. Functional Connectivity. Although studying the
anatomical connections of the brain allows us to understand
the basic structural connectivity throughout the brain,
investigating the functional connectivity provides us the
knowledge of how this structural architecture relates to
brain function. However, functional connectivity is based
on statistical computations representing only correlations
between nodes exceeding a specific threshold [31, 94]. In
fMRI analysis, functional connectivity is analyzed using the
BOLD signals. Therefore, functional connectivity emphasizes
highly functionally correlated regions. As a result of that, the
network can be presented as a fully connected graph among
functionally active regions [94]. Thus, measure of efficiency
of a network is always a relative quantity dependent on the
graphical analysis itself and the choice of threshold.

4.3.3. Effective Connectivity. Effective connectivity refers to
the effect that one neural system or element influences
another neural system or element [10, 31]. Using effective
connectivity, the causal interactions between the elements of
the network can be better understood. In this case, a directed
graph can be generated to represent the effective connectivity
between multiple regions of the brain network [10]. Applying
directed graphs is a more sophisticated approach since it
also provides information about the direction of connectivity.
However, this adds statistically relevant issues when comput-
ing fMRI data because temporal aspects of interaction have
to be considered which are problematic when measuring the
BOLD signal (for further discussion, see [95-98]).

4.4. Neurobiological Implications of Graph Theory

4.4.1. The Network Properties in Ising Model and the Brain Net-
work. Studying network properties in graph theory allows a
comparison of networks using Ising model data and empirical
fMRI data. An important measure in this comparison is the
distribution of the degree for the two types of data sets, along
with the distribution of the correlation. This will provide
the basis to compare the functional behaviour of the brain
network in resting state with the critical phenomena of the
Ising model.

After calculating, for each given temperature, configu-
rations of the 2D Ising model at a chosen number of time
points, a correlation matrix can be extracted and compared
with the correlation of the empirical data from the resting
brain (Figure 5). In Figure 5(a), the correlation distribution
of empirical and simulated data is showing an important
similarity when the Ising model is simulated at the critical
temperature. Figure 5(b) represents the degree distribution
for the graphs generated by the corresponding correlation
matrices after setting a threshold to zero (using the Brain
Connectivity Toolbox [86]). Beyond the critical temperature,
the correlation of the simulated data tends to go to zero.
At the critical temperature, the 2D Ising model, which does
not assess the quality or quantity of information processing,
is reflecting the distribution of correlation values of experi-
mental data relevant to brain dynamics [28]. In addition, the
distribution of the degree for the 2D Ising model at the critical
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temperature follows a similar behavior as the experimental
data. At temperatures below the critical temperature, the
average degree is found at a smaller value compared to that
of the resting fMRI degree distribution, which implies lower
functional connectivity of the nodes in the Ising model.

The brain network follows small-world behaviour with
higher efficiency and a higher clustering coefficient with
respect to random or scale-free networks [84]. Moreover, it
has shorter average path lengths and most of the connections
are made among the neighbouring nodes, while few long-
range connections are made in order to create short cuts.
In the case of the Ising model, the variation of the degree
distribution along with the temperature, allows extraction of
valuable information about the network. Below the critical
temperature the degree of connectivity of most nodes lies
around 10% of the highest possible degree while at higher
temperatures it is around 50% of the highest possible degree.
These two cases, sub- and supercritical regimes, show a low
efficiency in the network, suggesting that the critical behavior
for the Ising model is predicting the highest information
transfer in accordance with the resting brain data. As the
brain network shows small-world network behaviour with
lower characteristic path length and higher clustering coef-
ficients in controls, under pathological or pharmacological
conditions these properties could be altered depending on the
structural or functional modulations of the network.

To understand the structural organization of the brain
network and its functional interaction, research has focused
on brain alterations. Patients with severe brain injury are
especially interesting to investigate, as alterations in struc-
tural connectivity can be isolated and compared to loss of

function to further explore the relationship between struc-
tural and functional connectivity. Moreover, severe brain
injury is characterized by a large-scale network disconnection
which is the prime mechanism for the underlying cognitive
impairment [99]. A prominent impairment in patients with
severe brain injury is altered consciousness. In severe chronic
states this is defined as disorders of consciousness (DOC)
and comprises coma, vegetative state/unresponsive wake-
ful syndrome (VS/UWS), minimally consciousness states
(MCS), and locked-in syndrome (LIS) [100]. In the presence
of severe brain injury, the structure of the brain network
can be crucially affected. This may lead to a disruption
in the functional connectivity of the brain network, which
can be captured by their graphical properties [101]. It has
been observed by Crone et al. [91] that the functional
brain networks of patients with DOC demonstrate a higher
clustering coefficient compared to random networks, but a
similar characteristic path length, which verifies the small-
world attributes in both healthy controls as well as patients
with DOC. In comparison to healthy subjects though, the
patients show reduced modularity at the global level that
implies a shift in the ratio of the connection density within
and between clusters. This indicates a disturbance in the
optimal balance between integration and segregation.
Altered states of consciousness can also be observed
without changes in the structural connectivity as induced, for
example, by the anesthetic propofol. In anesthesia-induced
loss of consciousness, functional connectivity is disturbed
while the structural connectivity is preserved. In respect
to graph theory, this can be interpreted as a decrement of
the number of functional connections. Graph theoretical
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analyses revealed significant changes in the distribution
of degree and local functional organizations of brain net-
works during propofol-induced loss of consciousness [102]
Recently, Monti et al. investigated the increase in clustering
and characteristic path length and the decrease in efficiency
of global information flow in propofol-induced unconscious
brain networks, compared to wakefulness, mild-sedation,
and recovery states of the brain [103]. In their studies, loss of
consciousness in the sedation state was characterized as the
result of increasing the segregation effect in functional brain
organizations.

5. Conclusions and Discussion

Throughout this paper, we have reviewed the structure-
function relationship in the brain network with recent
ongoing analyses, focusing on the Ising model and graph
theory. The Ising model together with graph theory proved
to be effective approaches to studying brain dynamics. In
particular, the Ising model is involved in characterizing the
emergent properties of functional network organizations at
the critical temperature and the changes in organization
when temperature is departing from its critical value. Three
significant temperature values are taken into account as the
critical, subcritical, and supercritical temperatures. Much of
the earlier efforts have compared brain dynamics with the
behaviour of self-organized criticality at the critical point
of the Ising model. However, the recent finding of char-
acterising brain dynamics in the Griffith phase has started
diminishing the hallmark of self-organized criticality in brain
networks, unless the network becomes highly efficient and
optimized [104]. Their analyses provide the opportunity
to look into the behaviour of functional networks based
on Ising model simulation in subcritical and supercritical
temperature regions in order to understand the macroscopic
brain mechanisms. On the other hand, graph theory has been
providing another platform to characterize the structural and
functional connectivity of the brain. Underpinning results
of graph theoretical metrics reveal that the brain network
follows a small-world behaviour with a high efficiency and
low wiring cost [54, 84]. Furthermore, graph theoretical
measures provide additional understanding about the infor-
mation transfer among the nodes of the Ising model at the
critical temperature and in the sub- and supercritical regimes.

The brain is one of the most complex networks in nature
due to its sophisticated structure-function relationships.
Understanding the optimized information processing and
transfer in its cortical networks is the prime focus of much
current neuroscience research. With recent advancements
in neuroimaging techniques like fMRI (with high spatial
resolution), EEG, and MEG (with high temporal resolution),
any functional activity based measurements could quantify
global correlation patterns in wakeful resting brains [5] or
altered states of consciousness as induced by anaesthesia or
severe brain injury [33]. Current neuroimaging techniques
enable us to explore multiple functional networks within the
resting brain with resolution of the order of 10°> neurons in a
cubic millimeter of neuronal tissue [105]. With this in mind,
neuroimaging studies are limited in their characterization
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of individuals’ functionality within any correlated network.
However, several of the macroscopic brain phenomena,
for example, consciousness, mind, human cognition, global
information processing, have recently been investigated in
the resting brain with multidimensional analyses of the brain
organization in various spatial and temporal scales. With the
aid of mean field theory, the functional connectivity of these
networks has also been compared with the simulated self-
organized criticality of the Ising model in absence/presence
of anatomical connectivity.

Nowadays, multimodal neuroimaging is applied to
patients with DOC in order to find diagnostic tools [106].
In Figure 6, DTI, fMRI, and FDG-PET are presented for
a patient in vegetative state (VS/UWS) and a patient in
minimally conscious state (MCS) together with a healthy
subject [107]. While the resting-state fMRI and FDG-PET
images present a functionally preserved right hemisphere for
both patients, DTT shows underlying differences in structural
connectivity. In VS and MCS patients, these neuroimaging
methods complement each other to provide information of
structural and functional connectivity. In recent years, DOC,
which could be a result of impaired regulation of arousal
and awareness due to connectivity disruptions among dif-
ferent anatomical brain regions [108], have been extensively
studied [103, 109, 110]. Their findings highlighted the strong
dependency of structure and function in brain networks.
Applications of structural and functional neuroimaging,
together with computational modeling like the Ising model
may allow accessing the spatiotemporal organization of the
resting brain and its possible reorganization or disruption in
altered states of consciousness.

A recent review also highlighted the fact that structural
brain damage after traumatic brain injury (TBI) could disrupt
the functional activity of large-scale intrinsic connectivity
networks as well as interactions of the damaged struc-
ture with neuroinflammation and neurodegeneration as in
Alzheimer disease and chronic traumatic encephalopathy
[99]. Traumatic focal brain injury may disconnect large-scale
brain networks that might result in network dysfunction and
cognitive impairment. Their investigations on structural and
functional integrity within intrinsic connectivity networks
may help to improve diagnosis at the individual network
level and clinical treatment in future research. However, the
difficulty of accessing long-term human brain data after TBI
constrains current studies of DOC, which are mostly treated
on the basis of “trial” and “error” In patients with TBI, diffuse
axonal injury may damage structural network connectivity
via white matter fibers, which is difficult to investigate
through the current tractography technique [111, 112]. This
demands the necessity of studying computational models that
may help to understand in vivo structure-function relations
as well as neuronal intercommunication in large scale brain
networks [10].

Graph theory is a useful tool for understanding the orga-
nization of brain networks in different spatial and temporal
scales. In the healthy brain during rest, the organization
within and between RSNs demonstrates small-world features
which maximize the information transfer by a relative low
level of wiring cost [10]. Together with findings from Ising
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model simulations explaining the self-organized criticality of
brain dynamics, graph theory has opened the door to under-
stand specific properties of organization among these self-
organized functional modules [8]. This knowledge can now
be used to explore neurobiological mechanisms of the brain
network and its alterations in pathological or pharmacolog-
ical states to better understand how brain phenomena such
as cognition or consciousness emerge [1]. This knowledge
can then be used to improve innovative biomarkers for the
diagnosis and prognosis of disease.
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