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Reversed and increased functional 
connectivity in non‑REM 
sleep suggests an altered 
rather than reduced state 
of consciousness relative to wake
Evan Houldin1,2,3, Zhuo Fang1,4, Laura B. Ray1,5, Bobby Stojanoski1, Adrian M. Owen1,6 & 
Stuart M. Fogel1,4,5,6,7*

Sleep resting state network (RSN) functional connectivity (FC) is poorly understood, particularly 
for rapid eye movement (REM), and in non-sleep deprived subjects. REM and non-REM (NREM) 
sleep involve competing drives; towards hypersynchronous cortical oscillations in NREM; and 
towards wake-like desynchronized oscillations in REM. This study employed simultaneous 
electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to explore whether 
sleep RSN FC reflects these opposing drives. As hypothesized, this was confirmed for the majority of 
functional connections modulated by sleep. Further, changes were directional: e.g., positive wake 
correlations trended towards negative correlations in NREM and back towards positive correlations 
in REM. Moreover, the majority did not merely reduce magnitude, but actually either reversed and 
strengthened in the opposite direction, or increased in magnitude during NREM. This finding supports 
the notion that NREM is best expressed as having altered, rather than reduced FC. Further, as many 
of these functional connections comprised “higher-order” RSNs (which have been previously linked to 
cognition and consciousness), such as the default mode network, this finding is suggestive of possibly 
concomitant alterations to cognition and consciousness.

Resting state network (RSN) functional connectivity (FC) has been evaluated for a number of compromised 
and non-wakefulness states, including sedation1,2, the vegetative state3,4 and sleep5–8. These studies suggest that 
reduced states of conscious awareness are associated with a reduction in the magnitude of RSN FC, particularly 
for non-sensory, “higher-order” RSNs such as the default mode network (DMN)9. Further, higher-order RSNs 
have been associated with executive cognitive functions such as task shifting10 and verbal reasoning11. As such, 
RSN FC configurations can serve as a useful investigative tool for profiling both consciousness and higher-
order cognitive activity, albeit in an indirect, inferential manner. Such indirect profiling can be particularly 
useful for brain states in which direct assessments are theoretically challenging, as in sleep. However, RSN FC 
in sleep is poorly understood, due to the limited amount of fMRI data during sleep stages such as rapid eye 
movement (REM) and slow wave sleep (SWS)12. These sleep stages are accompanied by dramatic changes to the 
neurochemical and electrophysiological milieu of the brain. However, it remains to be fully determined how 
these systems-level changes are reflected in the accompanying changes to RSN FC dynamics, particularly in the 
non-sleep deprived brain.

REM and non-REM (NREM) sleep are defined by distinct electrophysiological signatures with unique neu-
rophysiological substrates. In particular, REM sleep is dissociated from NREM sleep by the extent of cortical 
synchrony. NREM sleep is characterized by cortical delta waves, ~ 0.5–2 Hz oscillations that are the consequence 
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of widespread synchronized communication. NREM sleep is typically13 further subdivided into NREM1, NREM2, 
and SWS, during which hypersynchronized cortical oscillatory activity14 increases progressively. In contrast, 
REM is associated with “desynchronized” cortical activity15 similar to wakefulness.

Reassuringly, such dramatic changes in EEG signature indeed appear to be reflected in concomitant spontane-
ous activity FC changes. A range of methodologies have been implemented in prior studies, with each providing 
unique insight into different aspects of sleep physiology and their respective functions. For example, seed-based 
correlation analysis has been used to identify a breakdown in the integrity of networks such as the DMN during 
NREM sleep as compared to wake8,16, however this is followed by a recoupling during REM17. Region-of-interest 
(ROI) based correlation approaches have been used to indicate shifts in the organization of RSNs during the tran-
sition from wake to NREM sleep6, with intra- vs. inter-network comparisons indicating increasing modularity of 
RSNs during NREM sleep18. Despite these findings, independent component analysis (ICA) indicates the general 
preservation of RSN topology during NREM19,20. Taken together, ICA reveals the overall robustness of RSNs 
during NREM, with seed-based methods revealing more subtle FC modulations within networks. The temporal 
complexity of DMN and attention network blood oxygen level dependent (BOLD) activity timeseries has also 
been evaluated as a potential proxy for conscious awareness, indicating a possible reduction during deep sleep5. 
Further, dynamic FC assessments indicate that NREM2 expresses fewer FC transitions than wakefulness21, with 
this reduced capacity to explore FC state space possibly reflecting reduced support for cognition during this stage.

Non-RSN based brain parcellations and graph theoretical results support these findings, indicating global 
FC reductions during deep sleep, albeit an initial increase in FC during NREM122. Although such parcellations 
are very useful in generating unbiased, data-driven results, they lack the ready interpretability of RSNs, vis a vis 
perceptual states and cognition. Moreover, a prior study by our own group20 and others19 suggests that, despite 
intra-RSN modulation by sleep, the spatial boundaries of wakefulness RSNs are well preserved across sleep stages, 
with no new RSNs appearing (despite a directed search for new sleep RSNs20). Importantly, these findings of the 
spatial robustness of the wakefulness RSNs, across all sleep stages, motivates a FC analysis across all sleep stages 
centered upon wakefulness-based RSN spatial templates. However, to our knowledge, a comprehensive evaluation 
of inter-RSN FC dynamics across wakefulness and all sleep stages, in healthy non-sleep deprived subjects, has yet 
to be performed. Accordingly, this complicates our capacity to generate inferences about changes to awareness 
and cognition during healthy sleep.

A useful prediction of such FC dynamics might be made however, based upon the FC dynamics of the most 
extensively examined RSN, the DMN; i.e., a progressive deviation away from the wakefulness FC profile during 
deepening NREM stages6,8, followed by a return to wake-like FC during REM17. As far as awareness is concerned, 
the present literature suggests that NREM (particularly SWS), involves both reduced arousal/awareness of the 
environment, as well as reduced desynchronized neural activity. For example, glucose consumption in NREM is 
half that of wakefulness23,24 and global FC decreases dramatically in SWS22. Despite such indications, it is largely 
the FC of higher-order RSNs specifically, that is modulated by states of cognition and conscious awareness3,4,9–11. 
Consequently, although NREM sleep certainly involves reduced conscious arousal, characterized by reduced 
sensory processing of the environment25, it is not entirely clear whether it also manifests a qualitatively different/
altered state of cognition and conscious awareness. Such a state could manifest correspondingly unique RSN FC 
patterns, as opposed to merely reduced wake-like FC patterns.

By employing simultaneous EEG-fMRI during sleep, this study had two primary aims: the first aim was to 
compare inter-RSN FC across all prominent sleep–wake states, in order to determine how changes in RSN FC 
patterns reflect known electrophysiological differences between NREM and REM. It was hypothesized that inter-
RSN FC would trend away from wakefulness-like FC, in a progressive fashion, during NREM and subsequently 
trend back towards wakefulness-like FC in REM. The second aim was to determine whether NREM RSN FC 
represents merely a reduced version of wakefulness FC, or an altered state of functional connectivity altogether.

Results
Edge functional connectivity polynomial fit results.  Of the 91 total FC edges, polynomial fits for 49 
edges failed to reject the null hypothesis. This suggests that either FC does not change across sleep/wake states 
for these edges, or that these results were not robust enough to generate conclusions with respect to the alteration 
of FC across wakefulness and sleep. This is not surprising however, as it would not necessarily be expected that 
all brain region pairings would change the magnitude or direction of their FC from sleep to wake. Importantly, 
this also suggests that the remaining edges, which we seek to further understand here, are the most responsive 
to neurophysiological dynamics across sleep/wake states. Of these remaining 42 edges, six were best described 
by either linear or cubic fits, with the vast majority, 86% or 36 edges, best described by quadratic fits, in line with 
our hypothesis. Of these 42 edges, 14 survive Holm-Bonferroni correction, with the vast majority of these (i.e., 
12) being quadratic. By contrast, the remaining polynomial patterns represent a relatively small minority of FC 
edges; only 2 survive Holm-Bonferroni correction. This significant result (Table 1) strongly suggests that whole-
brain RSN FC can be best described as deviating away from wakefulness FC during NREM sleep, and returning 
back towards wakefulness FC in REM sleep.

Table 1.   Chi square test of the distribution of polynomial fits to resting state network functional connectivity 
data across wakefulness and sleep.

Linear (N) Quadratic (N) Cubic (N) χ2 p

5 36 1 52 < 0.001



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11943  | https://doi.org/10.1038/s41598-021-91211-5

www.nature.com/scientificreports/

The quadratic fit edges were then categorized according to their inflection, with 18 found to be convex, and 
the remaining 18 being concave. Within each of these quadratic categories however, the majority of edges (13/18 
convex and 14/18 concave) moved in a direction towards reversed polarity during NREM (i.e., by either reducing 
magnitude, or by reversing polarity), and back towards wakefulness polarity during REM. Further, many of these 
subset edges appear to actually reverse polarity during NREM, instead of merely trending in the direction of 
reversed polarity. This suggests that FC in NREM sleep is systematically, and specifically, driven in the opposite 
direction from wake-like connectivity. For example, where two RSNs are positively correlated with one another 
in wakefulness, by contrast, in NREM sleep FC is driven in the direction of negative correlation.

The polynomial fits for the significant FC edges are illustrated graphically in Fig. 1, with the subset of convex 
and concave quadratic edges in which NREM FC moved opposite wakefulness FC indicated in red (also see 

Figure 1.   Significant polynomial fits to functional connectivity (FC) data across wakefulness and sleep stages. 
Plus symbols indicate group-average FC values for a given edge, for a given stage. Units are Fisher r-to-z-
transformed full-correlation values, taking into account autocorrelation. FC edges that change in the direction 
opposite to wakefulness polarity during NREM and return towards wakefulness FC during REM are indicated 
with red lines. Figures generated using MATLAB (R2019a; mathworks.com). FC edges best described by: 
(A) convex quadratic fits (N = 18; 13 red). (B) Concave quadratic fits (N = 18; 14 red). (C) Cubic fits (N = 1). 
(D) Linear fits (N = 5). Also see Supplemental Figs. S1 and S2, for FC matrices indicating the direct statistical 
comparison of edge FC distributions between specific stages. W wakefulness, REM rapid eye movement, 
NREM2 non-REM stage 2, SWS slow wave sleep.
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Supplemental Figs. S1 and S2, for FC matrices indicating the direct statistical comparison of edge FC distributions 
between specific stages and Supplemental Fig. S3, for histograms of the FC values for each stage). By contrast, 
the remaining polynomial patterns represent a relatively small minority of FC edges.

Angular distances between stages.  Overall, the above pattern of results, combined with the extant lit-
erature, strongly suggests that wakefulness and REM sleep could be characterized as FC states that are most simi-
lar to one another, and further, that wakefulness and SWS are most dissimilar (with NREM2 being intermediate 
between the two). However, despite the fact that the quadratic edges represent the majority of the significant 
polynomial fit edges, they still only represent a subset of the total number of FC edges (36/91). It is therefore not 
clear whether it can also be said that overall whole-brain RSN FC changes reflect this pattern. One method for 
assessing the dissimilarity of sets of features is angular distance. The complete set of features for a given state (in 
this case, FC edge data) can be assembled into a vector in multidimensional space (with one dimension per FC 
edge) and angular distances can be calculated between pairs of such vectors, with larger values indicating greater 
differentiation. We predicted that, overall (i.e., in the comparison of vectors comprising all 91 FC edges), the 
angular distances amongst the stages would reflect the suggested pattern described above.

The results (Fig. 2A) confirm that, overall, RSN FC in SWS sleep is indeed driven the furthest away from 
wakefulness (i.e., the angular distances between the groups of SWS and wake vectors are greatest), whereas RSN 
FC in REM sleep recovers back to a state that more closely resembles wakefulness (i.e., the angular distances are 
smallest), with NREM2 being intermediate. Note that only angle equivalents relative to wakefulness are presented 
in Fig. 2. Thus, angle equivalents between sleep stages are not equal to differences in the individual angles relative 
to wake, since these angles actually exist in multidimensional space, outside of the two-dimensional simplified 
plane presented in this figure. Importantly, the differences between all NREM vectors (i.e., NREM2 and SWS) 
and those of both wakefulness and REM were also significant and the differences between the vectors of wakeful-
ness and REM were not significant. The significant differences also survive Bonferroni correction. This indicates 
that, statistically, REM and wakefulness could not be distinguished from each other on the basis of their overall 

Figure 2.   Representative cartoon of the angular distances between vectors representing resting state network 
(RSN) functional connectivity (FC) in different sleep–wake stages. Vectors exist in multidimensional space, with 
the number of dimensions dependent on the number of FC edges that are in a given category (e.g., each vector 
exists in 91-dimensional space for the category “ALL edges”). However, only two dimensions are represented 
here, for illustrative purposes. Indicated angles are the degree-equivalent of the angular distances between the 
mean vectors for each stage (indicated as colored arrows), with the mean wakefulness vector always used as 
the reference point. Angles between sleep stages are not indicated, however, the statistical significance of these 
differences is indicated by asterisks (single/double/triple asterisks indicate p < 0.05/0.01/0.001, respectively). 
Note that angles between any pair of vectors actually exist in separate dimensional planes and are only 
represented in the same plane for illustrative purposes. Also note that angle equivalents between sleep stages 
are not equal to differences in the individual angles relative to wake, as such angles exist in multidimensional 
space and must be calculated separately. Colored triangles indicate the spread of vectors for each stage, again 
for illustrative purposes, as they are actually spread across multidimensional space. (A) ALL edges (N = 91 
dimensions). (B) ALL HIGHER-ORDER resting state network edges (N = 70). (C) Default mode network 
(DMN) & Fronto-Parietal network (F-P) edges (N = 46). REM rapid eye movement, NREM2 non-REM stage 2, 
SWS slow wave sleep.
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RSN FC, whereas both NREM2 and SWS can be distinguished from both wakefulness and REM. Based on these 
results, it is therefore reasonable to describe overall changes in RSN FC in terms of the predicted pattern.

Having found that NREM comprises an altered state (relative to both wakefulness and REM), from the per-
spective of whole-brain RSN FC, we next asked whether the same could be said from the perspective of the subset 
of RSNs that have previously been associated with higher-order cognition. This analysis was done in order to 
better understand the functional significance of the differences in FC between sleep/wake states. Consequently, 
the angular distance analysis was repeated using the 70 FC edges comprising at least one higher-order RSN node, 
since the FC of such RSNs has been associated with executive cognitive functions such as goal management10,26 
and verbal reasoning11. The following RSNs were classified as higher-order, on account of their involvement in 
the manipulation of multimodal information: (anterior and posterior) default mode network (aDMN, pDMN), 
executive control network (ECN), (left and right) fronto-parietal network (lF-P, rF-P), dorsal attention network 
(DAN). These RSNs were distinguished from the following “sensory” RSNs, which are primarily involved in the 
manipulation of unimodal sensory information: Auditory (A), somato-motor (SM), striate-, extrastriate- and 
ventral stream-visual networks (sV, esV, vsV).

As shown in Fig. 2B, we identified the same pattern in the higher order edges, as in the whole-brain analysis. 
Indeed, the angular distances between the wake and SWS vectors were significantly different, after Bonferroni 
correction (angle equivalents were 43° and 47°, respectively, for the whole-brain analysis and the higher-order 
RSN analysis). While such a result might not be completely unexpected, this is the first study to comprehensively 
compare higher-order RSN FC across all stages of sleep and wakefulness.

Finally, we asked whether NREM could be distinguished as an altered state, relative to wakefulness and REM, 
based on the subset of FC edges comprising RSN nodes that have previously been associated with the modula-
tion of conscious awareness, namely, the DMN and F-P RSNs1,2,9,27,28. We therefore repeated the angular distance 
analysis a second time, using vectors comprised of the subset of 46 edges comprising at least one DMN or F-P 
node. As shown in Fig. 2C, we identified the same pattern as the two prior analyses, with significant angular 
distance-equivalent angles that were similar to the higher-order RSN analysis (after Bonferroni correction).

Directional FC changes between wakefulness and NREM.  The results of the angular distance analy-
ses suggested that NREM is an altered state of FC, from the perspective of whole-brain RSN FC, and also from 
the perspective of those RSNs that have previously been associated with executive, higher-order cognition, and 
with consciousness. However, an angular distance analysis can only tell you that states are different; it doesn’t 
determine how states are different. Consequently, all FC edges were further statistically tested to determine 
whether the transition from wakefulness to NREM FC manifested; (A) a reduction in the magnitude of wakeful-
ness FC (i.e., negative FC values become less negative, positive values become less positive); (B) an increase in 
the magnitude of wakefulness FC, or; (C) a reversal of wakefulness FC (i.e., negative FC values become positive, 
or vice versa).

Remarkably, the results indicate that the majority of significant stage transitions between wakefulness and 
NREM are either increases, or reversals of FC (see Table 2), rather than reductions of FC (for reference, the spe-
cific nodes involved in each of the three stage transitions are indicated in Fig. 3). This finding holds, following 
Holm-Bonferroni correction (i.e., 6 reversal, 3 increase, and 7 reduction edges). A binomial test indicated that 
the proportion of increases/reversals (0.62), compared to reductions was higher than predicted (0.5), p = 0.029 
(1-sided). Not only was this pattern identified when all FC edges were examined, but, suggestively, it was also 
identified for the subset of edges comprising higher-order RSN nodes (the binomial test results are marginally 
significant, however; p = 0.058). It was further identified for the subset of edges comprising DMN or F-P net-
work nodes (the binomial test results are not significant in this case; i.e., p = 0.28). Furthermore, for these same 
categorizations (whole-brain, higher-order, DMN & F-P), the majority of edges indicate reversals, rather than 
increases in FC. This last finding reinforces the idea of NREM being an altered state of RSN FC, in contrast to 
an amplified or reduced state, relative to wakefulness FC.

Collectively, these results are surprising in that they appear to suggest that, from the perspective of RSN 
FC, NREM, and SWS in particular, might be a much more active state than previously supposed, given that the 
majority of FC edges associated with whole-brain connectivity, higher-order cognition, and with consciousness 
indicated increased or reversed FC, relative to wakefulness. This result is in striking contrast to conventional 
wisdom that NREM is a state characterized by degraded, reduced or disconnected functional communication 
between brain regions.

Table 2.   Summary of sensory and higher-order resting state network edges involved in reduced, increased 
or reversed functional connectivity (FC) changes between wakefulness and non-rapid eye movement sleep 
(NREM). DMN default mode network, F-P fronto-parietal network.

Edge node types

Significant FC change between wakefulness and NREM

Reduction (N) Increase (N) Reversal (N)

All edges 21 14 20

Higher-order—higher-order 5 2 5

Higher-order—sensory 11 7 11

Sensory—sensory 5 5 4

DMN or F-P nodes 12 4 10
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Discussion
There are four notable results from this study, each with important implications for understanding the RSN FC, 
and possibly, the associated levels of cognition and awareness, of brain states in which neurophysiology varies 
dramatically. First, as predicted, between-RSN FC appears to follow the aforementioned neurophysiological 
trends across wakefulness and sleep (i.e., changing cortical synchrony), for the majority of FC edges that were 
found to be best described by significant polynomial fits (i.e., 36/42 were quadratic). Consequently, we have 
identified, for the first time, a potential correspondence between these two distinctive, dynamic processes (i.e., 
RSN FC and cortical neurophysiology), across the complete spectrum of healthy brain states (i.e., wakefulness, 
NREM2, SWS and REM).

Second, the direction of this FC change was predictably specific to what the “starting” FC was in wakefulness, 
for 27/36 of the quadratic fit edges. For example, if edge FC between two RSNs was highly positively correlated 
in wakefulness, then this FC would trend increasingly in the direction of negative correlation from NREM2 to 
SWS and then return towards increasing correlation in REM.

Third, the angular distance results indicated that NREM, and SWS in particular, can be considered as an 
altered state (relative to both wakefulness and REM), from three different perspectives; namely, from whole-brain 
RSN FC; from the subset of higher-order RSN FC, and; from the further subset of DMN and F-P FC. Given 
previously established associations for the two subsets of RSNs, these findings are, at the very least, consistent 
with the possibility that NREM manifests both an altered state of higher-order cognition and of conscious 
awareness, relative to wakefulness. We acknowledge however, that these findings are only suggestive of such an 
interpretation, and that neither cognition, nor consciousness was measured directly in this study. Nevertheless, 
these findings could justify future, more direct investigations of this interpretation. It is also worth clarifying 
that REM can certainly also be viewed as an “altered” state, from a perceptual standpoint. However, while REM 
is known to manifest bizarre dream content, possibly as a consequence of reduced executive processing29, the 

Figure 3.   Summary of functional connectivity (FC) edge changes across wakefulness and Non-rapid eye 
movement (NREM). (A) FC changes between wakefulness and NREM stage 2 (NREM2). (B) FC changes 
between wakefulness and slow wave sleep (SWS). Circles indicate FC edges that increase (white), reduce (grey), 
or reverse (black) the polarity of FC during NREM, relative to wakefulness. FC edges that reduce wakefulness 
FC during one NREM stage, but reverse wakefulness FC during the other NREM stage are also indicated 
(grey-black circles). Circles overlaid on top of FC matrices for NREM2 (A) and SWS (B). Nodes reordered 
according to hierarchical clustering (hierarchy visualized above matrix). FC matrix colors represent Fisher r-to-z 
transformed correlations between nodes (taking into account autocorrelation and standard error), with 1-group 
t-test performed on all participants with data available for a given sleep stage. Select graphical elements of this 
figure (FC matrices, brain images, cluster hierarchies) were generated using the FSLNets network modeling 
toolbox (v0.6.3; fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). SM somato-motor, sV striate visual, A auditory, DAN 
dorsal attention network, esV extra-striate visual, vsV ventral stream visual, DMN default mode network, ECN 
executive control network, l/rF-P left/right fronto-parietal.
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vivid quality of this content is perhaps more similar, perceptually, to a waking experience, than that of NREM. 
By contrast, the altered perceptual structure30 (e.g., absent narrative content), and radically differentiated NREM 
FC suggests that the term altered might be more appropriate for NREM, at least relative to wake.

These results support the idea of contrasting functions for NREM and REM, wherein the brain is purpose-
fully driven into a different FC configuration in NREM and is then returned to a wakefulness-like configura-
tion in REM. It is possible that this very specific directional change in RSN FC serves a homeostatic function, 
such that RSN FC in NREM reduces FC, as it is established during a given day, so that the brain is less biased 
towards specific RSN connectivity the following day. This could result in cognitive flexibility and thereby facilitate 
improved adaptability. It is also consistent with the principle of the synaptic homeostasis hypothesis31, which 
asserts that NREM sleep serves to counterbalance accrued wakefulness long term potentiation (LTP) between 
specific neurons.

The fourth and most important finding was that the majority of RSN FC edges that change significantly 
between wakefulness and NREM, manifest either an increase in magnitude, or a reversal of the polarity of 
wakefulness FC during NREM, rather than a mere reduction of FC. As with the angular distance analysis, this 
result was found to hold from three important perspectives; whole-brain RSN FC, higher-order RSN FC, and 
the higher-order subset of DMN/F-P FC. With these results, we can further specify the nature in which NREM 
manifests as an altered state from wakefulness, and thereby flesh out the angular distance results. Namely, NREM 
seems to manifest as a combination of reversed, increased, and reduced RSN FC, relative to wakefulness, however 
it appears to be dominated by the first two transition types. Importantly, we believe that the term “altered” best 
applies to this specific combination of significant RSN FC transitions. We purposely distinguish from the term 
“reduced”, which we would otherwise use to describe alternative findings in which significant FC transitions 
were instead dominated by reduced RSN FC.

Moreover, the fact that this finding applies to both the subset of higher-order edges and to the further sub-
set of DMN/F-P edges is, at the very least, consistent with a characterization of NREM as an altered state of 
higher-order cognition and conscious awareness (more so than was indicated by the angular distance results). 
Importantly, this finding further contrasts with the characterization of NREM as a state of reduced connectiv-
ity, but also highlights the importance of discriminating between three types of RSN FC state transitions, (i.e., 
reversals, increases and reductions) rather than just increases or decreases in magnitude. Indeed, solely examining 
magnitude changes in FC during SWS, as in Spoormaker22, or even in the present study, leads to the conclusion 
that NREM predominantly manifests reduced FC, relative to wakefulness. By contrast, the altered character of 
NREM is only revealed when reversed and increased RSN FC transitions are together contrasted with reduced 
RSN FC. Notably, amongst the reversal and increasing FC edges, the predominance of reversal edges suggests 
that at least one of the functions of NREM sleep might be to drive cortical FC as far away from wakefulness FC 
as possible, further consistent with a homeostatic function.

It is important to note here that the observed reversal of FC is not inconsistent with the findings of other 
studies that FC is reduced in SWS sleep22,32, as FC can trend in the direction of reversed FC without increas-
ing in absolute value. For similar reasons, these findings are also not inconsistent with indications that energy 
consumption is reduced in NREM33,34.

Limitations of this study include the low number of participants with SWS (N = 9) and REM (N = 6). This 
limitation directly impacts any comparison made with these stages, particularly wake-REM comparisons, and 
including the polynomial fitting. On a related note, only four participants experienced what could be described 
as a complete first sleep cycle, with all four stages represented (i.e., also including NREM1). Thus, the majority 
of participants may be better described as having experienced a nap, rather than a night of sleep. However, as far 
as we are aware, this comprises the largest amount of healthy non-sleep deprived EEG-fMRI sleep data collected 
for these stages within a single study, given the challenges in sustaining sleep in the MRI scanner environment. 
Nevertheless, the aforementioned findings must be interpreted with caution, while taking these limitations into 
account.

A further limitation concerns the suggested implications with respect to conscious awareness and cogni-
tion during sleep. As mentioned above, measures of these qualities during sleep were not directly acquired. 
Nonetheless, we believe that this particular limitation is more reflective of the practical limitations of assessing 
consciousness during sleep more generally, given the relative isolation of the brain from the external environ-
ment. The most notable alternative solution to this limitation, i.e., reports derived from awakenings35, are very 
useful, however they are burdened with their own limitations. For example, it is unclear whether the awakening 
process interferes with memory encoding. It therefore remains possible that states of internal mentation and even 
consciousness were present prior to the awakening, with the report representing a false negative. Indeed, such 
memory encoding failures are suggested by intraoperative awareness36. We therefore consider the presentation of 
these findings to be an important step in addressing this practical challenge. Given the wealth of knowledge about 
the functional significance of RSNs, their interrogation across sleep/wake states has the potential to be used as a 
proxy for assessing capacities such as consciousness, which is otherwise challenging to determine during sleep.

We also acknowledge that the present study only addresses inter-RSN FC, not intra-RSN FC. This was a 
conscious limitation in order to focus on the relevance of RSNs to higher order cognition. Further, the external 
dataset (comprising independent components specific to a 20 model-order ICA decomposition) used to derive 
the RSNs in this study, was also selected with this focus in mind, even though different model-order ICA decom-
positions might yield RSNs with better representation in subcortical regions, for example. We would also add that 
in our previous study, utilizing the same dataset20, we found RSNs to be largely preserved across vigilance states, 
when using an ICA approach. We acknowledge that within-network FC is modulated by sleep, as evidenced by 
seed-based analysis for example8, however the overall spatial integrity of an RSN is largely preserved, with no 
new RSNs appearing in any sleep stages, according to our prior study.
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Finally, we note that preprocessing is known to shift FC distributions, however there is as yet no consensus 
on the ideal set of preprocessing steps for resting state data37. Although we believe that any distribution shifts 
associated with our preprocessing steps are appropriate (being the consequence of the removal of non-neuronal 
noise artifacts), FC categorizations, in particular FC reversals, should be interpreted within the context of the 
preprocessing used in this analysis. Within this context however, FC histograms are reassuringly similar, sug-
gesting that FC comparisons across states are based upon similar reference points. We further acknowledge that 
other preprocessing steps could lead to different, albeit complementary insights.

Future studies should follow up on one of the key findings of this study, that many RSN FC edges appear 
to reverse FC during NREM. A longitudinal study would be ideal for determining whether the strength of this 
reversal corresponds to the FC strength of a given edge on a given day. If so, this would provide further support 
for the idea that NREM serves a homeostatic function, at the level of RSN FC. It would also be worth investigating 
edges that don’t appear to change as a function of sleep–wake state, in addition to intra-RSN FC. In this study, 
54% of edges were, statistically, best described by a horizontal line across wakefulness and sleep, suggesting 
either that they genuinely do not change, or that our study did not obtain sufficient data to identify a change. 
Although given the number of positive results, we feel the likelihood of the former explanation is unlikely. It is 
also important to investigate other functional roles for this FC reversal in SWS; it is already known that NREM 
plays a key role in memory consolidation and relates to inter-individual differences in human intelligence38,39, for 
example. One means of investigating such functional roles might be to leverage EEG by identifying connections 
between RSN FC in different sleep stages and EEG-defined frequency band power dynamics, or phasic events 
such as sleep spindles and K complexes (all with known functional associations).

In summary, this study demonstrated for the first time that inter-RSN FC appears to be modulated in accord-
ance with changes in neurophysiology across wakefulness and all sleep stages, including REM. It further sug-
gested that NREM, and SWS in particular, progressively modulates RSN FC in a directional fashion, opposite 
to that of wakefulness, thereby implying a possible wakefulness/NREM homeostatic function. To our surprise, 
this directional change went as far as reversing FC and strengthening it in the opposite direction. When these 
changes in FC were tested more explicitly between wakefulness and NREM, across all edges, it was revealed that 
the majority of whole-brain RSN FC changes involve either increases or reversals, rather than mere reductions, 
in the strength of FC. This finding also applied to the subset of higher-order RSN edges and a further subset of 
DMN & F-P edges, which is suggestive of the possibility that NREM might manifest altered, rather than simply 
reduced, higher-order cognition and conscious awareness.

Materials and methods
Participants.  Thirty-six healthy right-handed adults (21 female) 18–34  years of age (M = 23.7, SD = 3.6), 
were recruited for this study. Of the 36 participants who met the study inclusion criteria, data for 34 participants 
(21 female, M = 23.7, SD = 3.7) was included in the analysis (one participant withdrew from the study due to dis-
comfort; another did not sleep during the EEG-fMRI session, but did have wake resting state data, however this 
data was excluded). An a priori statistical power analysis was not performed (there are currently no established 
procedures for performing a power analysis for resting state network fMRI studies, as there are for task-based 
fMRI studies), however the number of subjects included is consistent with previous studies investigating RSNs in 
sleep5,7,8. All participants were non-shift workers and medication-free, with no history of head injury or seizures, 
and had a normal body mass index (< 25). Participants were required and reported to be non-smokers, who 
drink no more than 2 caffeinated drinks per day, and no more than 14 alcoholic drinks in a week. On the day of 
the EEG-fMRI recording, participants were not allowed to consume caffeinated, alcoholic, or nicotine products. 
Further, all scored < 10 on the Beck Depression40 and the Beck Anxiety41 Inventories and had no history or signs 
of sleep disorders, as indicated by the Sleep Disorders Questionnaire42. All participants were required to keep a 
regular sleep–wake cycle (bed-time between 22h 00 and 24h 00, wake-time between 07h 00 and 09h 00) and to 
abstain from taking daytime naps at least 7 days prior to, and throughout participation in the study. Compliance 
with this schedule was monitored using both sleep diaries and wrist actigraphy (Actiwatch 2, Philips Respiron-
ics, Andover, MA, USA). All participants met the MRI safety screening criteria. In addition, participants were 
given a letter of information, provided informed written consent before participation, and were financially com-
pensated for their participation. This research was approved by the Western University Health Science Research 
Ethics Board. All the procedures were carried out in accordance with relevant guidelines.

Experimental design.  Each participant underwent a screening/orientation session one week prior to the 
experimental sleep session. The experimental sleep session took place between 21h 00 and 24h 00, during which 
time simultaneous EEG-fMRI was recorded while participants slept in the scanner. It consisted of a 5-min struc-
tural scan, followed by an eyes-closed wake resting state scan. Participants were then informed that they were 
free to fall asleep in the scanner. Lights out was at the participant’s normal bedtime (~ 22h 00). This period lasted 
for approximately 2 h. Following the sleep session, participants were allowed to sleep in the nearby sleep labora-
tory for the remainder of the night.

Polysomnographic recording and processing.  EEG recording parameters.  EEG was recorded using a 
64-channel magnetic resonance (MR)-compatible EEG cap (Braincap MR, Easycap, Herrsching, Germany) and 
two MR-compatible 32-channel amplifiers (Brainamp MR plus, Brain Products GmbH, Gilching, Germany). 
EEG caps included scalp electrodes referenced to FCz. Two bipolar electrocardiogram (ECG) recordings were 
taken from V2-V5 and V3-V6 using an MR-compatible 16-channel bipolar amplifier (Brainamp ExG MR, Brain 
Products GmbH, Gilching, Germany), synchronized to the MRI scanner acquisition using a Brain Products 
“SyncBox” (Brain Products GmbH, Gilching, Germany). These signals were acquired in addition to the drop-
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down ECG lead in the EEG cap, in order to acquire high-quality ECG to better visualize the QRS complex used 
in the subsequent ballistocardiographic (BCG) artifact correction procedure, described below. Using high-chlo-
ride abrasive electrode paste (Abralyt 2000 HiCL; Easycap, Herrsching, Germany), electrode–skin impedance 
was reduced to < 5 KOhm. In order to reduce movement-related EEG artifacts, participants’ heads were immo-
bilized in the MRI head-coil using foam cushions. In addition, the position of the participant was adjusted such 
that they were 40 mm offset from iso-centre. This procedure has been found to reduce BCG artifacts by as much 
as 40%43 making BCG artifact correction more straightforward. EEG was digitized at 5000 samples per second 
with a 500-nV resolution. Data were analog filtered by a band-limited low pass filter at 500 Hz and a high pass 
filter with a 10-s time constant corresponding to a high pass frequency of 0.0159 Hz. Data was transferred via 
fiber optic cable to a personal computer and recorded using Brain Vision Recorder Software, Version 1.x (Brain 
Vision, Gilching, Germany).

EEG data processing.  EEG scanner artifacts were removed in two separate steps. First, MRI gradient arti-
facts were removed using an adaptive average template subtraction method44 implemented in Brain Products 
Analyzer, and down-sampled to 250 Hz. In the second step, the R-peaks in the ECG were semi-automatically 
detected, visually verified, and manually adjusted when necessary, to correct both false positives and false nega-
tive r-peak detections. Then, adaptive template subtraction45 was used to remove BCG artifacts time-locked to 
the R-peak of the QRS complex of the cardiac rhythm. After these two steps, the quality of the data was visually 
verified and the amplitude of the residual artifacts time-locked to the r-peaks was inspected. An independent 
component analyses (ICA) based approach46,47 was applied to remove any remaining BCG residual artifact if 
the peak of the maximum amplitude of the residual artifact exceeded 3 μV during the QRS complex (e.g., 0 to 
600 ms). Finally, a low-pass filter (60 Hz) was applied to the EEG data, which were then re-referenced to averaged 
mastoids. Samples of EEG traces after correction are shown, for each sleep stage (i.e., NREM2, SWS and REM), 
in Fig. 4. Following the artifact correction, sleep stages were manually scored by an expert in accordance with 
standard criteria13 using the “VisEd Marks” toolbox (https://​github.​com/​jades​jardi​ns/​vised_​marks) for eeglab.

MRI imaging acquisition and processing..  Recording parameters.  Brain images were acquired using 
a 3.0 T TIM TRIO magnetic resonance imaging system (Siemens, Erlangen, Germany) and a 64-channel head 
coil. A structural T1-weighted MRI image was acquired for all participants using a 3D MPRAGE sequence 
(TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, FA = 9°, 176 slices, FoV = 256 × 256 mm2, matrix size = 256 × 256 × 176, 
voxel size = 1 × 1 × 1 mm3). Multislice T2*-weighted fMRI images were acquired during the sleep session with 
a gradient echo-planar sequence using axial slice orientation (TR = 2160  ms, TE = 30  ms, FA = 90°, 40 trans-
verse slices, 3  mm slice thickness, 10% inter-slice gap, FoV = 220 × 220 mm2, matrix size = 64 × 64 × 40, voxel 
size = 3.44 × 3.44 × 3 mm3). In order to obtain EEG with time-stable artifacts, which aligned to the timing of the 
EEG recordings, the MR scan repetition time was set to 2160 ms, such that it matched a common multiple of 
the EEG sample time (0.2 ms), the product of the scanner clock precision (0.1 μs) and the number of slices (40) 
used48.

Functional data classification.  To be included in the fMRI analysis, the EEG had to be visibly movement arti-
fact-free. Volumes were classified as wake, NREM1, NREM2, SWS or REM in 20 s epochs. Wake data used in the 
analysis was taken from the wake resting state session only, despite wake segments being present in the sleep ses-
sion data. This was to avoid including wake periods contaminated with variable levels of drowsiness/sleep inertia 
from preceding sleep episodes of varying sleep depth. Following sleep scoring, a single epoch of fMRI data was 
extracted from the total set of functional volumes, for each participant who had data available for a given stage.

The inclusion criteria for fMRI epochs used in the final analysis was done in such a way as to maximize the 
use of the available data, while also equalizing epoch lengths between stages and across participants. The length 
of the epoch extracted per participant was determined by considering the minimum length time series available 
amongst all the participant data for a given stage. For example, if the smallest epoch available for a given par-
ticipant was 4 min, then a single 4-min NREM2 epoch was extracted from the data available for all participants 
with NREM2 data.

Wake data acquired/extracted for analysis.  34 participants included in the analysis had at least 150 volumes 
(approximately 51/2 min) worth of data. One participant had data recorded with different acquisition parameters, 
so their wake data was excluded, leaving a total of 33 participants, each with 150-volume epochs used in the final 
analysis. For the direct comparison of stages, the 150 volumes were truncated (see below) to match the number 
of volumes available in a given sleep stage.

Sleep stage data acquired/extracted for analysis.  Overall, participants managed to obtain the full spectrum of 
sleep stages (NREM1, NREM2, SWS and REM sleep). Given the significant challenges of sustaining sleep in an 
MRI scanner environment (due to noise and participant comfort), on an individual basis the majority of partici-
pants maintained sleep in only a subset of the sleep stages of interest, for a duration long enough to be considered 
sufficient for FC analysis. Despite these challenges, 4 participants did manage to transition through all three 
sleep-stages of interest (NREM2, SWS and REM), with a sufficient duration of sleep in a given stage for the FC 
analysis (see Supplemental Table S1 for sleep macrostructural data for each participant with some amount of 
usable sleep data; note that “Wake” in this table refers to awakenings during sleep, not separately acquired wake 
resting state data).

Sleep stage NREM1 was mostly unavailable, however considering the brief and transitional nature of this 
stage, it was justifiably eliminated from the analysis at the expense of exploring interesting FC changes that might 

https://github.com/jadesjardins/vised_marks
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occur during the sleep onset process; which would likely require an experimental approach tailored to study 
sleep onset per se. The majority of participants (24 out of 33) had enough NREM2 sleep data to match the avail-
able wake data (150-volume epochs). In the case of SWS, 9 participants had at least 133-volumes (4.8 min) of 
data. Six participants had at least 129-volumes (4.6 min) of REM data. For the direct comparison of sleep stages, 
NREM2 and SWS data was truncated (see below for details).

Functional data truncation.  In order to have equal length epochs to satisfy the requirements of the analysis 
approach used in the direct inter-stage comparisons (see Supplemental Figs. S1 and S2), data for the stage with 
more volumes available per subject was truncated to the length of the stage with fewer volumes available (see 
Table 3 for a summary of the number of volumes and subjects used in different stage comparisons). For the wake 
vs. SWS comparison, wake epochs were truncated to the length of the shorter SWS epochs (i.e., 133 volumes). 
Similarly, in the comparison of wake vs. REM, wake epochs were truncated to the length of the shorter REM 
epochs (i.e., 129 volumes). Likewise, NREM2 epochs were reduced to 133 volumes in the NREM2 vs. SWS 
comparison. Notably, this reduction allowed for two datasets to be re-included in the analysis, resulting in 26 
133-volume epochs for the NREM2 vs. SWS comparison. Similarly, 26 129-volume NREM2 epochs were used 

Figure 4.   Screenshots of residual gradient- and BCG artifact-corrected EEG tracings for each sleep stage used 
in the analyses. (A) Non-REM stage 2 (B) Slow wave sleep (C) Rapid eye movement (REM) sleep.
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in the NREM2 vs. REM comparison. Finally, SWS epochs were truncated to 129 volumes for the SWS vs. REM 
analysis.

Preprocessing.  Each sleep and wake epoch was individually preprocessed using the Oxford Centre for Func-
tional Magnetic Resonance Imaging of the Brain Software Library (FMRIB, Oxford U.K.; FSL version 5.0949). 
Functional volumes within each epoch were realigned using FSL’s MCFLIRT tool50 which performs rigid body 
transformations. Non-brain voxels were also extracted using FSL’s BET tool51. Volumes were spatially smoothed 
using a Gaussian kernel of 5 mm full-width at half-maximum (FWHM) and high-pass temporal filtered (Gauss-
ian-weighted least-squares straight line fitting, FWHM = 2000  s). Functional volumes were then coregistered 
to the MNI152 standard space (McConnell Brain Imaging Centre, Montreal Neurological Institute) using 12 
degree-of-freedom affine registration. Finally, each epoch was individually cleaned of non-neuronal artifacts 
using the FIX plug-in for the FSL package52,53, an automatic noise detection and removal algorithm. Prior to 
using FIX, FSL’s MELODIC tool54 was used to generate ICs for each epoch. MELODIC’s default dimensional-
ity estimation function automatically estimates the number of ICs by performing a Bayesian analysis. FIX then 
assessed each of these ICs as noise or signal, after generating more than 180 distinct spatial and temporal features 
of each IC and feeding these into a multi-level classifier. ICs classified as noise were then subtracted from the ICA 
mixing matrix and a new set of functional volumes was generated.

Functional connectivity analysis.  The FC analysis was carried out in a number of stages. First, pseudo 
times series were generated for each RSN. These were created by first spatially regressing 20 independent com-
ponent (IC) templates (derived from a separate healthy waking RSN ICA study55) onto the single-subject 4D 
epochs available for each sleep stage, using FSL’s dual_regression function56. External IC templates were used 
to avoid circular analysis57. The regression of waking spatial templates onto sleep stage data was justified by 
our prior study20, in which we identified the persistence of waking RSNs during each stage of sleep using ICA 
(despite known modulation of within-RSN FC by sleep, as identified by other methods, such as seed-based cor-
relation analysis8). The spatial regression produced a set of 20 beta values (i.e., one beta value per IC) for each 
volume of functional data, reflecting how well each of the 20 ICs were represented at each time point. Each IC 
therefore had a series of beta values across all time points, which was treated as a pseudo time series, for further 
FC analysis. These pseudo-time series were used as inputs for the FSLNets network modeling toolbox (v0.6.3; 
http://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​FSLNe​ts). Notably, the 20 external IC templates included non-neuronal ICs. 
FSL image viewer FSLEyes and the FSLNets’ ts_spectra function were used to respectively assess the spatial con-
figuration and power–frequency spectra of each of the 20 ICs, so that noise-related ICs might be excluded from 
the FC analysis. The time courses of six ICs that were assessed as noise-related were regressed out of all other 
time series and then deleted, leaving 14 RSN time series. Next, full-correlation matrices were generated from 
these 14 RSN time series, at the single subject level, using FSLNets’ nets_netmats function, resulting in 91 unique 
FC edges for each sleep stage, for each participant (i.e., there are 91 unique pairs amongst 14 RSNs). Full correla-
tion values were converted to z-scores using the Fisher r-to-z transform, with corrections made for degrees of 
freedom, taking into account autocorrelation.

Polynomial fitting to edge functional connectivity data across wakefulness and sleep.  In 
order to test our main hypotheses, we assessed the pattern of FC changes across all sleep stages for a given FC 
edge. First, FC data was stage-coded, such that for any given FC edge; the individual wake FC values comprised 
y-axis values, and each of these was assigned a corresponding x-axis value of “1”; the NREM2 FC values were 
assigned an x-axis a value of “2”; the SWS FC values were assigned an x-axis value of “3”, and; the REM values 
were assigned an x-axis value of “4”. Next, first-, second- and third-order polynomials (i.e., linear, quadratic and 
cubic curves) were each fit to a scatterplot of this data, for each edge. The quality of fit for each curve was assessed 
by calculating a coefficient of determination (i.e., an R-square value). Next, permutation hypothesis testing was 
carried out to test for the statistical likelihood of the individual R-square values for each curve fit. Each value was 

Table 3.   Sample sizes and number of functional magnetic resonance imaging (fMRI) volumes used in 
comparisons of functional connectivity (FC) between stages. REM rapid eye movement, NREM2 non-REM 
stage 2, SWS slow wave sleep.

Comparison

N/number of fMRI volumes

Wake NREM2 SWS REM

Primary analysis 33/150 24/150 9/133 6/129

Between-stage FC comparisons presented in Supplemen-
tal Figs. S1 and S2

Wake vs. NREM2 33/150 24/150

Wake vs. SWS 33/133 9/133

Wake vs. REM 33/129 6/129

NREM2 vs. SWS 26/133 9/133

NREM2 vs. REM 26/129 6/129

SWS vs. REM 9/129 6/129

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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compared with sample distributions of R-square values, generated by resampling the data (i.e., a null distribution 
of R-square values was generated by randomly assigning FC data for a given edge to different sleep stages, then 
calculating new R square values for each polynomial type, and iterating this procedure 10,000 times).

Next, each of the 91 edges was assessed as being best described by one of the three polynomial functions, i.e., 
a first-order non-horizontal line, a second-order quadratic function, or a third-order cubic function (see Fig. 5 
for a cartoon of possible fits corresponding to the null and alternate hypotheses). The selection criteria for the 
best fit was as follows: (1) if only one type of polynomial fit was significantly different from a horizontal line for 
a given edge, then the pattern of FC change for that edge was categorized as being best described by that fit, (2) 
if multiple fits were statistically significant, the polynomial fit with the highest R-square value was used to best 
describe the pattern of FC change for that edge, and (3) if no statistically significant best-fits were identified, then 
that edge was categorized as being best described by a flat, horizontal line (i.e., no significant changes in edge FC 
across the sleep stages, in accordance with the null hypothesis; see top left panel of Fig. 5).

Once all the edges were categorized according to best polynomial fit, a one-variable chi-square test was per-
formed to examine the distribution of polynomial fits that differed significantly from a horizontal line.

Angular distances between stages.  Angular distances were evaluated in order to determine the dis-
similarity between each of the sleep stages and wakefulness. This was done by first assembling relevant edge FC 
values for a given participant in a given stage into a single vector. For example, for NREM2 there were 24 vectors 
in total, corresponding to the 24 participants with useful NREM2 data. For comparisons of all FC edge data, each 
of these 24 NREM2 vectors was comprised of 91 values, corresponding to the 91 unique FC edges amongst the 
14 RSNs assessed in this study. By contrast, for comparisons of the subset of DMN & F-P edges, each of the 24 
NREM2 vectors was comprised of 46 values, corresponding to the 46 FC edges that comprised either DMN or 
F-P nodes. Next, angular distances were calculated between mean vectors for each stage (i.e., vectors comprised 
of edge FC values that have been averaged across participants for a given stage). Angular distances were calcu-
lated between pairs of vectors according to the following formula:

where A, B are the vectors of interest, A · B is the vector dot product, and ‖ A ‖‖ B ‖ are the vector lengths.
In order to evaluate the statistical significance of the differences between the vectors belonging to each stage, 

a non-parametric MANOVA was performed58,59. In this case, Eq. (1) was used to evaluate angular distances 
between vectors defined by single-subject edge FC data for each stage. The test statistic is a multivariate analogue 
of the F-ratio, as follows:

(1)Angular distance =
cos−1

(

A·B
�A��B�

)

π

Figure 5.   Cartoon of possible polynomial fits for functional connectivity (FC) data across wakefulness and 
sleep. (A) Null hypothesis (H0); first-order polynomial, horizontal line fit. (B) Alternative hypothesis 1 (H1); 
first-order polynomial, non-horizontal line fit. (C) Alternative hypothesis 2 (H2); second-order polynomial, 
quadratic line fit. (D) Alternative hypothesis 3 (H3); third-order polynomial, cubic line fit. REM rapid eye 
movement, NREM2 non-REM stage 2, SWS slow wave sleep.
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where the numerator is the between-groups variance and the denominator is the within-groups variance. SSA is 
the between-group angular distance sum of squares (SS), calculated as total SS (SST) − SSW, SSW is the within-
group angular distance sum of squares. SS is calculated as the angular distances amongst all single-subject vector 
pair combinations, divided by the relevant number of vectors, as per58,59, a = number of groups, N = number of 
vectors.

A null distribution of this statistic was created by resampling the data (i.e., by randomly assigning the vectors 
to different sleep stages, calculating new pseudo F-statistics and iterating this procedure 10,000 times). A P-value 
was then calculated for the actual F value by comparing it to the permuted sample distribution. A significant 
F value was followed by a posteriori testing, in which t-statistics for specific pairs of sleep–wake stages were 
calculated as the square root of the F-statistic above, as per58, with statistical significance calculated using the 
same resampling technique.

Finally, this set of procedures was repeated for vectors comprised of the subset of FC edges comprising 
higher-order RSN nodes (i.e., 70 edges), and, for the further subset of FC edges comprising DMN or F-P nodes 
(i.e., 46 edges).

Directional FC changes between wakefulness and NREM.  Next, in order to test our second aim (i.e., 
to determine whether NREM FC is better described as a reduced version of wakefulness functional connectiv-
ity, or as an alternate state), all edge FC changes were tested to determine whether NREM sleep manifested; (A) 
a reduction in the magnitude of wakefulness FC (i.e., negative FC values become less negative, positive values 
become less positive); (B) an increase in the magnitude of wakefulness FC, or; (C) a reversal of wakefulness 
FC (e.g., negative FC values become positive and vice versa). A and B were accomplished by first calculating, 
for each edge, a t-statistic based on the actual wake and NREM FC values (i.e., between wake and NREM2 FC 
values, and, separately, between wake and SWS FC values), and then comparing this t-statistic value against a 
null distribution of t-statistic values, generated by the same permutation hypothesis testing method described 
in the polynomial-fitting analysis, above. C was accomplished by first calculating, for each FC edge, a 1-sample 
t-statistic for the wake FC values, and separate 1-sample t-statistic values for each of the NREM FC data (i.e., for 
NREM2 and SWS). These t-statistics were compared to null distributions generated using permutation hypoth-
esis testing (e.g., if wake was being compared with NREM2, then the category labels for these two stages were 
permuted). If, for a given edge, the t-statistic was significant in one direction for wake, and further the t-statistic 
was significant in the opposite direction, for either of the NREM stages, then that edge was categorized as hav-
ing reversed its FC across wakefulness and NREM. Finally, binomial tests were performed on the distribution of 
these types of change (i.e., increases and reversals vs. reductions).
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