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Processing of the same 
narrative stimuli elicits common 
functional connectivity dynamics 
between individuals
Başak Türker 1*, Laouen Belloli 1,2, Adrian M. Owen 3, Lorina Naci 4,5 & Jacobo D. Sitt 1,5*

It has been suggested that conscious experience is linked to the richness of brain state repertories, 
which change in response to environmental and internal stimuli. High-level sensory stimulation has 
been shown to alter local brain activity and induce neural synchrony across participants. However, 
the dynamic interplay of cognitive processes underlying moment-to-moment information processing 
remains poorly understood. Using naturalistic movies as an ecological laboratory model of the real 
world, here we investigate how the processing of complex naturalistic stimuli alters the dynamics 
of brain network interactions and how these in turn support information processing. Participants 
underwent fMRI recordings during movie watching, scrambled movie watching, and resting. By 
measuring the phase-synchrony between different brain networks, we analyzed whole-brain 
connectivity patterns. Our finding revealed distinct connectivity patterns associated with each 
experimental condition. We found higher synchronization of brain patterns across participants during 
movie watching compared to rest and scrambled movie conditions. Furthermore, synchronization 
levels increased during the most engaging parts of the movie. The synchronization dynamics among 
participants were associated with suspense; scenes with higher levels of suspense induced greater 
synchronization. These results suggest that processing the same high-level information elicits 
common neural dynamics across individuals, and that whole-brain functional connectivity tracks 
variations in processed information and subjective experience.

The content of our conscious experience changes depending on the environment and ongoing task. Both external 
and internal information are processed and integrated to give rise to our conscious experiences. The dynamic 
interplay of cognitive processes that underlie our moment-to-moment experience of the world remains poorly 
understood. Using naturalistic movies as an ecological laboratory model of the real world, previous studies have 
shown that audio-visual clips influence brain activity in a similar manner across individuals, reflecting their 
shared conscious experiences and holistic understanding. Movie watching can synchronize brain activity in 
the cortex1–6, elicit time-resolved correlations between pairs of regions7, and give rise to consistent whole-brain 
activations across participants8. Moreover, studies have shown that the quality of encoding of the movie’s content 
is correlated with inter-subject synchronization during movie watching9,10. However, the descriptions of local acti-
vations offer only a limited summary of the dynamic processes that give rise to coherent understanding over time.

In recent years, dynamic descriptions of brain activity have gained prominence as they might better account 
for the participant’s mental state. Focusing on how different brain networks interact over time, rather than the 
classic description of local activity, could provide a better understanding of conscious processing. The interac-
tion between brain regions has been widely investigated using static functional connectivity11–14 computed over 
the entire fMRI scan (for a comprehensive review see15). More recently, dynamic functional connectivity meas-
ures came into use, revealing transient brain states that vary in time16–20, reflecting cognitive processes at any 
given moment21,22. It has been suggested that the richness of conscious experience can be directly linked to the 
richness of brain state repertories. Indeed, individuals who lack consciousness present brain states that are less 
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diverse, with fewer long-range interactions and no anticorrelation between brain areas23–25. Furthermore, active 
interventions, such as deep brain stimulation aimed at restoring consciousness have been found to increase the 
diversity of brain state repertoires26.

A recent study utilizing a latent space representation of brain network interactions found increased overall 
similarity between participants who actively tried to understand a scrambled movie27. However, the movie fea-
tures that drive inter-subject synchronization of brains states are poorly understood. Given the evolving nature 
of movie plots, high-level cognitive processing of the movie varies significantly over time. Therefore, it is crucial 
to unravel the relationship between similar brain state dynamics across participants and the dynamic features of 
a particular narrative to understand how brain processes contribute to movie comprehension over time.

To address this gap, our study investigates how the processing of plot-driven naturalistic movies dynamically 
shapes brain state repertoire, as assessed through interactions among dynamic brain networks. This brain state 
repertoire has previously been shown to undergo alterations in unconscious states25. In our study, we exam-
ine whole-brain connectivity patterns that emerge during resting-state, movie watching, and scrambled movie 
watching in healthy participants to assess the functional roles of these brain states and how they evolve during 
shared conscious experiences. Our findings demonstrate that certain brain patterns are more prevalent during 
movie-watching whereas some others are more prominent in non-movie conditions. Moreover, by analyzing 
temporal average and dynamic (time-resolved) synchronization of the connectivity patterns between partici-
pants, we show that narrative stimuli induce higher inter-subject synchronization, especially during suspenseful 
scenes. Altogether, these results suggest that processing of the same narrative stimuli elicits common functional 
connectivity configurations between individuals, and the dynamics of these brain states track variations in the 
high-level properties of the processed information.

Results
We investigated how high-level sensory information processing influences ongoing brain activity emerging 
from the coordination of different brain regions. 15 participants underwent fMRI recordings during movie 
watching and rest. A second group of 12 participants watched the same movie but scrambled to prevent them 
from understanding the plot while still viewing every scene. Using Hilbert transform and k-means clustering, 
we computed whole-brain connectivity patterns for each fMRI volume in each condition (Fig. 1). The cluster-
ing procedure included 42 regions of interests (Table S1) taken from a previous study25 and has resulted in four 
distinct connectivity patterns (Fig. 2A).

First, we hypothesized that some whole-brain connectivity patterns would be associated with a particular 
experimental condition and would vary in frequency accordingly. A linear model revealed a Pattern*Condition 
interaction (F(6) = 7.17, p < 0.0001). Pattern 2 showed increased occurrence during movie watching (median: 
28.4%) compared to resting-state (median: 11.2%, t(156) = 3.94, p = 0.0004, after Bonferroni correction), and 
scrambled movie watching (median: 11.4%, t(156) = 4.77, p < 0.0001). By contrast, Pattern 1 was less frequent 
during movie watching (median: 13.0%) compared to resting-state (median: 22.3%, t(156) = − 3.48, p = 0.0019) 
and scrambled movie (22.1%, t(156) = − 3.38, p = 0.0027) (Fig. 2A). We didn’t find any significant difference 
between the resting-state and scrambled movie watching for Patterns 1 (t(156) = − 0.099, p = 1.00) and Pattern 2 
(t(156) = 1.05, p = 0.88). Patterns 3 and 4 had similar occurrence probabilities across all conditions.

To ensure that these results were not dependent on our ROI selection, we conducted a second cluster-
ing procedure using the Harvard–Oxford whole-brain parcellation atlas. The connectivity patterns found in 
this procedure can be found in Fig. S1. As anticipated, the use of this alternative whole-brain atlas produced 
similar findings. We found a Pattern*Condition interaction F(6) = 5.54, p < 0.0001). Patterns 3 and 4 did not 

Figure 1.   Summary of the method used to compute inter-areal connectivity patterns. Following the 
preprocessing of the fMRI data, BOLD signal time-series were extracted from 42 regions of interest (ROIs) 
belonging to 6 different networks (visual, auditory, saliency, default mode, fronto-parietal, and motor). The 
Hilbert transform was applied to all time-series in order to extract the instantaneous phase at each fMRI volume 
(pink and blue circles in the figure). Phase-differences were computed between each ROI pair (in this example 
between ROI A and B) at each time point (black circles in the figure). Using cosine similarity, we ranged the 
phase synchronies between − 1 and 1; − 1 indicating a complete phase opposition and 1 indicating a complete 
phase coherence between the two ROIs. Then, phase synchrony values were used to create a 42 by 42 inter-
areal coordination matrix for each time-point (fMRI volume). Using k-means clustering, we classified the 
coordination matrices into 4 prototypical patterns. Finally, the fMRI data of each participant was expressed as a 
sequence of these 4 patterns.
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Figure 2.   Condition specific variation of the whole-brain connectivity patterns. (A) Occurrence probability of the 4 patterns 
during movie watching (blue), rest (brown) and scrambled movie watching (yellow). Patterns 3 and 4 displayed similar occurrence 
probabilities across the three conditions. However, Patterns 1 and 2 showed condition-specific modulation: while Pattern 2 showed 
increased occurrence during movie watching, Pattern 1 was more frequent in scrambled movie watching and resting-state conditions. 
Stars indicate statistical significance after correction for multiple comparisons using the Bonferroni procedure. (B) Description of the 
differences between Pattern 2 (more frequent in movie condition) and Pattern 1 (more frequent in non-movie conditions). Coherence 
values are depicted using blue shades for negative coherence (C < 0) and red shades for positive coherence (C > 0) after correction 
for multiple comparisons using the Benjamini–Hochberg procedure (Sign test; p < 0.001). Gray color represents coherence that is 
not significantly different from zero. Note that brain templates show top 5% coherence for visualisation purposes. Pattern 2 (left), 
which was more frequent in the movie condition, showed negative phase coherence between the default-mode network (DMN) and 
fronto-parietal (FP), saliency (SAL) and visual (VIS) networks while the visual network had positive coherence with fronto-parietal 
(FP) and saliency (SAL) networks. Pattern 1 (center), which had more occurrence in non-movie conditions, was characterized by 
positive coherence between default-mode network (DMN) and fronto-parietal (FP) and visual (VIS) networks and negative coherence 
between saliency network (SAL) and visual (VIS) and default-mode networks. The contrast between patterns (Pattern 2–Pattern 1; 
right) revealed more negative coherence between default-mode network (DMN) and fronto-parietal (FP) and visual (VIS) networks 
in Pattern 2 (increased with movie) than Pattern 1 (increased with non-movie conditions). Moreover, saliency (SAL) and visual (VIS) 
networks showed more positive coherence in Pattern 2 compared to Pattern 1. Gray color indicates p values greater than 0.001 after 
FDR correction in a mixed linear model.
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exhibit significant differences between conditions, whereas Patterns 1 and 2 showed condition-specific changes 
(see Fig. S2A). Specifically, Pattern 2 had a higher occurrence during movie watching compared to both rest-
ing-state (t(156) = 2.46, p = 0.045, after Bonferroni correction), and scrambled movie watching (t(156) = 2.56, 
p < 0.035). Conversely, Pattern 1 was less frequent during movie watching compared to scrambled movie watching 
(t(156) = − 3.84, p < 0.0005). The difference between movie watching and resting state for Pattern 1 remained a 
tendency following strict Bonferroni correction (t(156) = − 2.37, p < 0.057). Nonetheless, the observed effect’s 
directionality aligned with our results from the original analysis.

Given the movie-specific modulation of Patterns 1 and 2, we investigated how they differed in their inter-
ROI coherence profiles. Pattern 2, which occurred more frequently during movie watching, showed positive 
coherence between the saliency network (SAL), fronto-parietal (FP) and visual (VIS) networks, and negative 
coherence between the default-mode network (DMN) and fronto-parietal (FP), saliency (SAL) and visual (VIS) 
networks (Fig. 2B, left panel). On the other hand, Pattern 1, which occurred more frequently in the non-movie 
conditions, exhibited negative coherence between SAL–DMN and SAL–VIS, and positive coherence between 
DMN–FP and DMN–VIS (Fig. 2B, middle panel). The contrast between Pattern 2 and Pattern 1 (Fig. 2B, right 
panel) revealed that Pattern 2 contained more negative coherence between DMN–FP and DMN–VIS, and more 
positive coherence between FP–VIS and SAL–VIS compared to Pattern 1.

Next, we hypothesized that functional connectivity dynamics would be similar across participants during 
movie watching when the same narrative drives brain activity. We computed an inter-subject similarity index 
(ISI) that allows us to assess the inter-subject co-occurrence of the patterns in the three experimental condi-
tions. Since we were describing the brain activity with only four patterns, co-occurrence of patterns could arise 
by chance, even though participants were under different conditions and their brain activity was completely 
independent. The ISI indicates how much more co-occurrence participants have compared to chance-level 
co-occurrence. As expected, we found ISI values around zero during rest (Wilcoxon signed rank test after 
Bonferroni correction: V = 35, p = 0.51) and scrambled movie watching (V = 64, p = 0.16), indicating that the 
co-occurrence of patterns during those conditions was at chance level. We observed a significant increase in 
the ISI during movie watching (median ISI = 0.05, S.E. = 0.005, V = 120, p = 0.0002) compared to rest (median 
ISI = 0, S.E. = 0.003, t(39) = 9.56, p < 0.0001, after Bonferroni correction) and scrambled movie watching (median 
ISI = 0.01, S.E. = 0.004, t(39) = 6.74, p < 0.0001), indicating higher co-occurrence when participants watched 
the movie (Fig. 3A). We further validated these results with our second clustering procedure using the Har-
vard–Oxford atlas (Figure S2B). Consistently, the ISI values exceeded chance-level ISI only during the movie-
watching condition (V = 100. p = 0.021). In contrast, during both resting-state (V = 33, p = 0.14) and scrambled 
movie watching (V = 57, p = 0.18), the ISI values remained around zero.

We predicted that the co-occurrence of the patterns would be more important during the most engaging 
parts of the movie, during which the movie plot captures the viewers’ attention. We took advantage of the sus-
penseful nature of the movie and utilized a pre-existing dataset where a third group of 15 participants had rated 
the suspense of the scenes on an 8-item scale outside of the scanner1. We noted higher suspense values in the 
second half of the movie compared to the first half (mean: 1.3 vs. 0.9, Wilcoxon rank-sum rest: z = 2.43, p = 0.01). 
As predicted, ISI values were higher only in the second half of the movie (F(2) = 44.34, p < 0.0001) and did not 
differ between conditions during the first half of the recordings (F(2) = 1.73, p = 0.2) (Fig. 3B,C). The same was 
true for the patterns’ occurrence probabilities in the three conditions, which only differed in the second half of 
the recordings (Fig. 3D).

For a finer assessment of inter-subject brain state synchronization, we used entropy as a measure of instan-
taneous pattern co-occurrence among participants at each time point. Lower entropy values indicate higher 
co-occurrence between participants. We observed a negative relationship between the average suspense ratings 
and the entropy values: scenes with higher suspense were followed by a decrease in entropy, indicating a higher 
co-occurrence across participants (Fig. 4A). The relationship between the suspense and entropy was further con-
firmed by a significant Spearman’s correlation (rho = − 0.2548, p = 0.0002), taking a 6 s fMRI response lag (3 TRs) 
relative to the time of suspense rating into account (Fig. 4B). This relationship was not found in the resting-state 
(rho = − 0.08, p = 0.25) and scrambled movie conditions (rho = 0.09, p = 0.21) (Fig. S3). The negative relationship 
between suspense ratings and the entropy levels during movie watching was also observed when clustering the 
brain patterns using the Harvard–Oxford atlas (Fig. S2C,D).

Finally, we investigated whether this increased co-occurrence during suspenseful scenes was driven by a spe-
cific connectivity pattern, or if all patterns contributed similarly to the increase. Following a previously published 
method8, we determined the most frequently expressed pattern at each time window during movie watching 
and scrambled movie conditions and assessed their consistency across participants (Fig. 4C). We subtracted the 
time-averaged occurrence probabilities of each pattern during the movie and scrambled movie watching (Fig. 2A) 
from the consistency level in these conditions to reveal consistency exceeding mean session occurrence. Overall, 
we found higher consistency values during movie watching compared to scrambled movie watching (mean: 44.1 
vs. 38.6, Wilcoxon rank-sum test: z = 3.65, p = 0.0003). Furthermore, Pattern 2, which showed increased occur-
rence during movie watching, was the dominant pattern during the moments of suspense in the second half of 
the movie, reaching up to 65% excess consistency.

To summarize, our findings demonstrate that (1) dynamic connectivity patterns show condition-specific 
modulation in their occurrence frequency, with Pattern 2, characterized by positive coherence between the VIS 
and FP networks and negative coherence between the DMN and VIS, FP, and SAL networks, exhibiting increased 
occurrence probability during movie watching compared to non-movie watching conditions; (2) participants 
show synchronization in their dynamic functional connectivity profiles during movie watching; (3) this synchro-
nization is significantly associated with the narrative of the movie, and suspenseful moments are associated with 
higher synchronization; and (4) Pattern 2 contributed the most to the synchronization in suspenseful moments. 
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Altogether these results suggest that processing of the same high-level information elicits similar functional con-
nectivity dynamics that reflect and track changes in the properties of the processed information.

Discussion
In the current study, we investigate how the processing of an engaging audio-visual stimulus alters ongoing brain 
activity and induces common functional connectivity dynamics across viewers. Until now, most studies investi-
gating inter-subject synchronization during naturalistic stimuli viewing focused on local static activations1–5,9,10. 
In contrast, our study takes a global and dynamic perspective of neural activity and reveals that watching a plot-
driven and captivating movie shapes the interaction of brain networks and synchronizes the network dynamics 
across-individuals. Importantly, we also demonstrate that the neural synchronization across participants is not 
stable but rather fluctuates over time. Indeed, the dynamics of the network interactions vary with the suspense 
of the scenes, resulting in a higher inter-subject synchronization when participants are immersed in the movie. 

Figure 3.   Movie watching induces inter-subject synchronization (A) Average inter-subject similarity index (ISI) 
of each participant in resting-state (RS), scrambled movie, and movie watching conditions. Similarity indices 
were not different than zero in non-movie conditions, indicating a chance-level co-occurrence of patterns 
among participants throughout the whole duration. On the other hand, participants in the movie condition 
showed higher similarity index values, indicating increased co-occurrence of the patterns compared to chance. 
Each dot represents a participant. Stars denote statistical significance after correction for multiple comparisons 
using Bonferroni procedure. (B,C) Average ISI of each participant computed over the first (B) and second (C) 
half of the fMRI scan during resting-state, scrambled movie watching, and movie watching conditions. While 
ISI did not differ between condition during the first half of the fMRI scan (F(2) = 1.73, p = 0.19), ISI during 
movie watching was significantly higher compared to resting-state (t(39) = 8.49, p < 0.0001) and scrambled 
movie (t(39) = 7.6, p < 0.0001) conditions. ISI during resting-state and scrambled movie conditions were not 
statistically different (t(39) = 0.41, p = 1). (D) The occurrence probability of the patterns during the first (left) and 
the second (right) half of the fMRI recording in movie watching, resting-state and scrambled movie watching 
conditions. While no significant interactions were found between the condition and the pattern probabilities 
during the first half of the scan (F(6) = 1.81, p = 0.1), a significant interaction was observed in the second half 
(F(2) = 13.00, p < 0.0001). Pattern 2 showed increased probability during movie watching compared to resting-
state (t(156) = 5.09, p < 0.0001) and scrambled movie watching (t(156) = 6.43, p < 0.0001) and Pattern 1 was more 
frequent during scrambled movie watching (t(156) = 5.20, p < 0.0001) and resting-state (t(156) = 3.82, p = 0.0006) 
compared to movie watching. Patterns 3 and 4 did not differ between conditions.
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These results were further confirmed in a second clustering procedure using the Harvard–Oxford atlas, which 
provided a more comprehensive representation of the brain compared to the 42 regions of interest employed in 
the initial analysis, ensuring that our findings were not dependent on the ROI selection.

In light of these results, we propose that suspense ratings may be used as a proxy for the allocation of atten-
tion. Suspenseful scenes capture attention which enhances the processing of the scenes, resulting in a higher 
inter-subject synchronization during these scenes. Compatible with our results, several studies have found that 
increased suspense in the narrative induces higher activity in the ventral attention network28,29. Our results 
go beyond this finding and show that increased attention in turn, modulates the ongoing processing similarly 
across individuals.

The two patterns that showed condition-specific modulation present both positive and negative phase coher-
ence between different brain regions that coordinate according to the ongoing task (Fig. 2B). For example, posi-
tive coherence between visual and FP networks and negative coherence between DMN and FP networks during 
movie watching suggest that while attention networks coordinate with sensory areas, they decouple from the 
regions that are implicated in internal thought generation30,31. These results are consistent with previous studies 
reporting a juxtaposition between DM and FP networks during movie watching32 and during switches between 
internal and external awareness33, and furthermore show that this decoupling occurs simultaneously with the 
coupling of sensory and attention networks. Interestingly, studies show that patterns which exhibit both positive 

Figure 4.   Scenes with high suspense induce inter-subject synchronization by increasing the co-occurrence 
of the movie-related whole-brain connectivity pattern. (A) Suspenseful scenes increase pattern co-occurrence 
during movie watching. The dark gray line shows the variations in the average suspense rating. Entropy 
(light blue line) of the pattern distribution among participants at each time point is used as an instantaneous 
co-occurrence measure. Lower entropy values indicate higher co-occurrence. Note the negative relationship 
between the suspense rating and the entropy values: scenes with higher suspense ratings are followed by a 
decrease in entropy and thus an increased co-occurrence of the patterns among participants. (B) Scatter plot 
of the average suspense rating and the subsequent entropy values (6 s after the suspense rating). We found 
a significant negative correlation between the two measures (rho = − 0.2548; p = 0.0002). (C) Instantaneous 
co-occurrence during suspenseful scenes is associated with the movie-specific pattern. Temporal consistency 
of the whole-brain connectivity patterns in the movie (middle panel) and scrambled movie (bottom panel) 
watching condition. Variations in the average suspense rating can be found in the top panel. The dominant 
pattern at a given time point is indicated by a color code. The y-axis shows the percentage of across-participant 
consistency. The overall occurrence probability of each pattern in the conditions (Fig. 2A) is subtracted from 
the instantaneous consistency in order to assess consistency exceeding random occurrence. Note the higher 
consistency values in the movie condition compared to the scrambled movie condition. Pattern 2 (blue) was the 
dominant pattern during increased suspense, reaching up to 65% excess consistency during movie watching.
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and negative coherence between different brain regions are predominant in healthy populations and diminish 
in unconscious states23–26. Our results add to this literature by showing that, in healthy participants, these rich 
coherence patterns can be divided into similar yet distinct sub-patterns reflecting the cognitive processes impli-
cated in the ongoing task.

We believe that providing a comprehensive description of the fMRI patterns modulated by the experimental 
conditions is essential to uncover the underlying mechanisms at play. For instance, by thoroughly character-
izing the network interactions within the brain patterns associated with conscious states, and delving into the 
sub-patterns that reflect the cognitive processes involved in the ongoing task (Pattern 1 and Pattern 2), we can 
potentially glean valuable insights into the specific network interactions that contribute to the formation of 
conscious experiences and our comprehension of the external world.

One could ask why scrambled movie watching and resting-state induce similar connectivity patterns although 
the two conditions differ drastically, especially at the sensory level. This might be due to the fact that participants 
could not follow the plot in the scrambled movie condition and therefore, may instead, have directed their atten-
tion to their self-generated thoughts, as they did during resting-state scans30. Since the whole-brain patterns 
capture the global brain state and not region-specific activations, they are likely more sensitive to participants’ 
ongoing mental activity than detailed sensory-driven processes, and thus, pick up on the similarities between 
the mental states elicited by these apparently different conditions.

In summary, our study provides valuable insights into the impact of ecologically valid stimuli on brain activity 
and inter-subject synchronization. By adopting a global and dynamic approach, we demonstrate that watching a 
plot-driven and captivating movie shapes the interaction of brain networks, resulting in synchronized network 
dynamics across individuals. This synchronization effect has potential applications in probing conscious pro-
cessing across different states, including sleep, anesthesia, and disorders of consciousness (DoC). For instance, 
investigating the extent to which a DoC patient’s mental processes synchronize with those of healthy controls 
could help assess their ability to process external information. Such measures have the potential to improve the 
diagnostic process, particularly for patients displaying cognitive-motor dissociation34, who are often misdiag-
nosed as being in a vegetative state due to a lack of behavioral responses35. Overall, our study highlights the 
importance of considering dynamic network interactions and the high-level stimulus characteristics when explor-
ing inter-subject synchronization during naturalistic stimuli viewing and hold implications for the development 
of tools that aimed at assessing intact cognitive capacities across a range of behaviorally unresponsive populations.

Method
Participants and procedure
In this study, we used a previously published dataset5 in which 27 participants underwent functional MRI 
recordings. During the acquisition, 15 participants (18–40 years; 7 males) watched an 8-min black and white 
movie clip taken from a TV show entitled “Alfred Hitchcock Presents—Bang! You’re Dead”. The same partici-
pants also went through a resting-state scan. A second group of 12 participants (18–30 years; 4 males) watched 
the same movie but in a scrambled order. In this condition, the movie was cut into 1-s segments and shuffled, 
allowing participants to see all the scenes without understanding the plot of the movie. Please note that these 
participants only underwent the scrambled movie condition and did not undergo any resting state scans. To 
evaluate how suspense varied in the movie, a third group of 15 participants (19–29 years; 5 males) watched the 
movie clip outside of the scanner and were asked to rate how suspenseful every 2-s segment of the movie was 
using an 8-point scale. All participants were right-handed native English speakers without any neurological or 
psychiatric disorders. They provided written informed consent prior to the experiment and were remunerated for 
their participation. This study followed the principles prescribed by the declaration of Helsinki and was approved 
by the local ethics board of the Western University. Further information on the participants or experimental 
procedure can be found in Naci et al.5.

MRI acquisition parameters
MRI data were acquired on a 3T Siemens Tim Trio System. T2*-weighted whole-brain images were recorded 
during resting-state (256 volumes), movie (246 volumes) and scrambled movie (238) watching with a gradient-
echo EPI sequence (33 slices, slice thickness: 3 mm, interslice gap of 25%, TR/TE: 2000 ms/30 ms, voxel size: 
3 × 3 × 3 mm, flip angle: 75°). A mirror box allowed participants to see the movie that was presented on a projec-
tion screen behind the scanner. Noise cancellation headphones (Sensimetrics, S14) were also used for sound 
delivery. An anatomical volume was also acquired using T1-weighted MPRAGE sequence in the same acquisition 
sessions (154 slices, matrix size: 240 × 256 × 192, TE: 4.25 ms, voxel size: 1 × 1 × 1 mm, flip angle: 9°).

ROI selection
Our main analysis incorporates 42 regions of interest (ROIs) belonging to six distinct networks (visual, auditory, 
saliency, default mode, fronto-parietal, and motor). These ROIs were adopted from a previous study25, which 
utilizes phase-synchrony-based functional connectivity patterns to distinguish between conscious and uncon-
scious participants. In our research, one of our objectives was to explore the functional significance of these brain 
patterns in the context of conscious experiences and an understanding of a narrative. Our rationale was straight-
forward: if these brain patterns indeed mirror high-level cognitive processes occurring during the integration 
of intricate stimuli from various sensory modalities, then they should exhibit changes when participants engage 
in movie-watching, synchronizing among individuals who collectively share a conscious experience. To achieve 
this, we utilized the same set of ROIs as delineated in this previous study25. For a comprehensive list of these 
ROIs along with their MNI coordinates, please refer to Table S1. To ensure that our results were not biased by 
our ROI selection and could generalize to other brain parcellations, we conducted a second clustering procedure 
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using the Harvard–Oxford atlas. This atlas comprises 48 cortical regions (91 ROIs in total when considering 
both hemispheres). The comprehensive list of ROIs used in this procedure is available on the NeuroVault website 
(https://​neuro​vault.​org/​colle​ctions/​262/).

fMRI preprocessing
Raw MRI data were preprocessed and denoised using CONN functional connectivity toolbox36 implemented in 
MATLAB (The MathWorks). The first 5 volumes were discarded to ensure stable magnetization. The preprocess-
ing procedure included realignment, slice-time correction, outlier detection, segmentation, normalization into 
the MNI152 space (Montreal Neurological Institute), and spatial smoothing using a Gaussian kernel of 6-mm 
full width at half-maximum. For outlier correction, images with more than 0.3 mm framewise displacement in 
one of the z, y, z directions, more than 0.02 rad rotational displacement, or global mean intensity exceeding 3 
standard deviations were included as nuisance regressors in the generalized linear model (GLM). White mat-
ter and cerebrospinal fluid masks were also included as nuisance parameters in the GLMs. Average time-series 
from 42 regions of interest were extracted after applying a 0.008–0.09 Hz band-pass filter to the signal. Regions 
of interest were defined as 10 mm-diameter spheres around the given MNI coordinates (Table S1). Note that 
current recommendations for denoising procedures in fMRI analysis advocate for a simultaneous approach 
involving both band-pass filtering and nuisance regression in a single step37,38. However, in our main analysis, 
we chose to employ a sequential approach, first regression and then filtering. This decision was made to maintain 
methodological consistency with previous research that assessed phase-synchrony-based functional connectiv-
ity patterns in conscious and unconscious humans25. By following the same approach as these earlier studies, 
we ensured that the patterns observed in their work and our study would remain directly comparable. On the 
other hand, during our second clustering procedure, we chose to employ simultaneous band-pass filtering and 
nuisance regression. Given that the goal of this second clustering was to serve as a validation step rather than a 
direct comparison with previous studies, we optimized our preprocessing strategy accordingly.

Time‑varying functional connectivity patterns
All computations were performed in MATLAB. Following the preprocessing, extracted ROI time-series were 
represented in the complex space using their analytic representation that composed by the original signal (real 
part) and the Hilbert transform of the signal (imaginary part). The instantaneous phase is computed as the 
inverse tangent of the ratio of the imaginary and real components and wrapped into the [− π, π] interval using 
the angle function implemented in MATLAB. This allowed us to have a time-series of instantaneous phases for 
each ROI. Note that to avoid edge artefacts, the first and last 9 time points have been discarded from the time 
series. Then, phase differences between each ROI pair (861 in total) were calculated for every fMRI volume using 
cosine similarity. Thus, the whole-brain connectivity configuration at each time point could be represented as an 
observation in a 861-dimensional space. We concatenated data from all sessions (42 in total: 15 resting-states, 15 
movies and 12 scrambled movies) and applied k-means clustering in order to uncover ‘prototypical’ connectivity 
configurations that were recurrent in all experimental conditions. Connectivity configuration at each time point 
was then labeled with one of the 4 cluster centroids to which the configuration belonged. Finally, participants’ 
brain activity during the scans was expressed as a sequence of the 4 centroids.

K‑means clustering procedure
K-means clustering is an unsupervised classification method allowing to divide a dataset into distinct, non-
overlapping clusters. We selected K-means over other clustering methods because it doesn’t require assumptions 
about the data’s shape and has been previously used in similar studies23–25. The number of clusters, denoted as ‘k’, 
is determined in advance. In our study, we conducted the clustering process five times, considering k values of 
3, 4, 5, 6, and 7. Subsequently, we employed the Silhouette method with elbow criterion to identify the optimal 
number of clusters our analysis revealed that 4 clusters provided the optimal classification. The algorithm operates 
as follows: Initially, the algorithm randomly selects K data points from the dataset as the initial cluster centroids. 
Then, it computes the distance between each data point and each cluster centroid, assigning each data point to 
the nearest cluster. In our study, we utilized the Manhattan distance as the distance metric. The subsequent step 
involves updating the cluster centroids. It calculates the new cluster centroids by computing the average of all the 
data points within each cluster. Once again, it computes the distance between each data point and each cluster 
centroid, reassigning each data point to the nearest cluster, and updating the cluster centroids. This process iter-
ates until convergence, which occurs when the cluster centroids no longer change. Importantly, the choice of 
initial centroids can impact the final clustering outcome. Therefore, we repeated the clustering procedure 1000 
times with different initial clusters to select the best result, which corresponds to the configuration with the 
lowest total sum of distances.

Inter‑subject similarity index
We computed an Inter-subject Similarity Index (ISI) in order to assess the resemblance between the participants’ 
pattern sequences using the following formula

where P(A = i) and P(B = i) are the occurrence probabilities of Pattern i (among total number of k patterns, in this 
study k = 4) in participants A and B respectively. P(A = i, B = i) corresponds to the joint probability of exhibiting 
Pattern i by participants A and B at a given time-point. This index measures the co-occurrence of brain patterns 

ISI(A,B) =

∑
k

i=1 (P(A = i, B = i)− P(A = i)P(B = i))
∑

k

i=1 ((P(A = i)+ P(B = i))/2− P(A = i)P(B = i))

https://neurovault.org/collections/262/
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between two participants (A and B) while correcting for the overall occurrence probability of each connectivity 
pattern. Positive values of ISI indicate higher co-occurrence of patterns compared to chance (ISI = 0). The syn-
chronization level of each participant is defined as their average ISI with all the other participants of their group.

Suspense rating
15 participants watched the movie outside of the scanner. The movie was cut into 2 s segments. After viewing 
each segment, participants rated the suspense level of the segment on an 8-point scale ranging from not sus-
penseful at all to maximal suspense. A moving average of 7 ratings (14 s) was computed in order to bring out 
the changes in the movie plot and remove the rapid variations within the scenes. Average suspense ratings can 
be found in Fig. 4A.

Instantaneous co‑occurrence
We used entropy as a measure of instantaneous pattern co-occurrence between participants. Entropy H(X) of 
the connectivity patterns at a given time point is computed with:

where P(xi) is the occurrence probability of pattern i among the participants at a given moment. Since we have 
four distinct patterns, the maximum entropy is equal to 2, indicating a uniform distribution of the pattern prob-
abilities (¼ of the participants exhibited each pattern). Conversely, lower entropy values indicate that majority of 
the participants had the same pattern at the given time point. This co-occurrence measure is not pattern specific: 
increased co-occurrence of any patterns would decrease the entropy values. In order to assess the relationship 
between the suspense variations and the instantaneous co-occurrence among participants, we took the moving 
average of 7 entropy values as with the suspense ratings.

Temporal pattern consistency
Following a previously published method8, we assessed which patterns contributed the most to the inter-subject 
co-occurrence of the patterns. This method consists in counting the number of participants having a given pat-
tern at least once in a time window and in determining the pattern that manifested the most. Here we used a 
sliding window of 7 consecutive time points to construct the time windows similarly to all our other analyses. 
The dominant patterns during movie watching and scrambled movie watching can be found in Fig. 4C in the 
center and bottom panels respectively. The percentage of consistency indicates the percentage of participants 
having the dominant pattern at a time point. In order to exclude consistency that might appear by chance given 
the natural occurrence probabilities of the patterns, we subtracted the occurrence percentage of a pattern during 
the movie and scrambled movie-watching scans from the percentage of consistency of this pattern at a given 
time-point in these conditions.

Statistical analyses
Occurrence probabilities of the patterns and changes in the similarity index across conditions are assessed with 
linear models using lme439, car40, and emmans41 packages in R42. Wilcoxon rank-sum tests on the suspense ratings 
and the temporal consistency values, as well as the Spearman’s correlation between the suspense values and the 
entropy were performed on MATLAB (The MathWorks). All tests are corrected for multiple comparisons using 
the Bonferroni procedure except for the sign-tests on Pattern coherence levels which were corrected using the 
Benjamini–Hochberg procedure. We made this choice because our brain patterns consisted of 42 by 42 matrices, 
resulting in a total of 861 (42*41/2) values when comparing coherence values to zero. When dealing with such 
a substantial number of comparisons, applying the Bonferroni correction would have led to an exceedingly 
stringent significance threshold, potentially increasing the likelihood of false negatives. To address this issue, 
we instead opted for the Benjamini–Hochberg procedure with a significance threshold of 0.001, which is more 
stringent than the conventional 0.05 threshold.

Data availability
All data that support the findings of the study as well as the custom analysis scripts can be found in OSF (https://​
osf.​io/​ewuyk/?​view_​only=​f540b​0a652​1b4e4​b8b00​fdaf5​671d0​79).

Received: 30 March 2023; Accepted: 29 November 2023

References
	 1.	 Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. 

Science 303, 1634–1640 (2004).
	 2.	 Jääskeläinen, I. P. et al. Inter-subject synchronization of prefrontal cortex hemodynamic activity during natural viewing. Open 

Neuroimaging J. 2, 14–19 (2008).
	 3.	 Kauppi, J.-P., Jääskeläinen, I., Sams, M. & Tohka, J. Inter-subject correlation of brain hemodynamic responses during watching a 

movie: Localization in space and frequency. Front. Neuroinform. 4, 669 (2010).
	 4.	 Nummenmaa, L. et al. Emotions promote social interaction by synchronizing brain activity across individuals. Proc. Natl. Acad. 

Sci. 109, 9599–9604 (2012).
	 5.	 Naci, L., Cusack, R., Anello, M. & Owen, A. M. A common neural code for similar conscious experiences in different individuals. 

PNAS 111, 14277–14282 (2014).

H(X) = −

4∑

i=1

P(xi) log2 P(xi)

https://osf.io/ewuyk/?view_only=f540b0a6521b4e4b8b00fdaf5671d079
https://osf.io/ewuyk/?view_only=f540b0a6521b4e4b8b00fdaf5671d079


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21260  | https://doi.org/10.1038/s41598-023-48656-7

www.nature.com/scientificreports/

	 6.	 Lankinen, K. et al. Consistency and similarity of MEG- and fMRI-signal time courses during movie viewing. NeuroImage 173, 
361–369 (2018).

	 7.	 Di, X., Zhang, Z., Xu, T. & Biswal, B. B. Dynamic and stationary brain connectivity during movie watching as revealed by functional 
MRI. Brain Struct. Funct. 227, 2299–2312 (2022).

	 8.	 van der Meer, J. N., Breakspear, M., Chang, L. J., Sonkusare, S. & Cocchi, L. Movie viewing elicits rich and reliable brain state 
dynamics. Nat. Commun. 11, 5004 (2020).

	 9.	 Hasson, U., Furman, O., Clark, D., Dudai, Y. & Davachi, L. Enhanced intersubject correlations during movie viewing correlate 
with successful episodic encoding. Neuron 57, 452–462 (2008).

	10.	 Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 
(2016).

	11.	 Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. 
Sci. 102, 9673–9678 (2005).

	12.	 Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103, 13848–13853 (2006).
	13.	 Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human 

brain. Neuron 83, 238–251 (2014).
	14.	 Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 

(2015).
	15.	 van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: A review on resting-state fMRI functional connectivity. 

Eur. Neuropsychopharmacol. 20, 519–534 (2010).
	16.	 Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple 

time scales. Proc. Natl. Acad. Sci. 104, 10240–10245 (2007).
	17.	 Tagliazucchi, E., Von Wegner, F., Morzelewski, A., Brodbeck, V. & Laufs, H. Dynamic BOLD functional connectivity in humans 

and its electrophysiological correlates. Front. Hum. Neurosci. 6, 339 (2012).
	18.	 Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S. & Menon, R. S. Resting-state networks show dynamic functional con-

nectivity in awake humans and anesthetized macaques. Hum. Brain Map. 34, 2154–2177 (2013).
	19.	 Allen, E. A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014).
	20.	 Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity dynamically evolves on multiple time-scales over a static structural 

connectome: Models and mechanisms. NeuroImage 160, 84–96 (2017).
	21.	 Gonzalez-Castillo, J. et al. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. 

PNAS 112, 8762–8767 (2015).
	22.	 Gonzalez-Castillo, J. & Bandettini, P. A. Task-based dynamic functional connectivity: Recent findings and open questions. Neu-

roImage 180, 526–533 (2018).
	23.	 Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U.S.A. 112, 887–892 

(2015).
	24.	 Uhrig, L. et al. Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 129, 942–958 (2018).
	25.	 Demertzi, A. et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 5, 

eaat7603 (2019).
	26.	 Tasserie, J. et al. Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model. Sci. 

Adv. 8, eabl5547 (2022).
	27.	 Song, H., Park, B., Park, H. & Shim, W. M. Cognitive and neural state dynamics of narrative comprehension. J. Neurosci. 41, 

8972–8990 (2021).
	28.	 Bezdek, M. A. et al. Neural evidence that suspense narrows attentional focus. Neuroscience 303, 338–345 (2015).
	29.	 Bezdek, M. A., Wenzel, W. G. & Schumacher, E. H. The effect of visual and musical suspense on brain activation and memory 

during naturalistic viewing. Biol. Psychol. 129, 73–81 (2017).
	30.	 Mason, M. F. et al. Wandering minds: The default network and stimulus-independent thought. Science 315, 393–395 (2007).
	31.	 Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: Meta-analysis of functional 

neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage 111, 611–621 (2015).
	32.	 Haugg, A. et al. Do patients thought to lack consciousness retain the capacity for internal as well as external awareness?. Front 

Neurol 9, 492 (2018).
	33.	 Vanhaudenhuyse, A. et al. Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 

23, 570–578 (2011).
	34.	 Schiff, N. D. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 72, 1413–1415 (2015).
	35.	 Fernández-Espejo, D. & Owen, A. M. Detecting awareness after severe brain injury. Nat. Rev. Neurosci. 14, 801–809 (2013).
	36.	 Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain 

networks. Brain Connect. 2(3), 125–141 (2012).
	37.	 Hallquist, M. N., Hwang, K. & Luna, B. The nuisance of nuisance regression: spectral misspecification in a common approach to 

resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82, 208–225 (2013).
	38.	 Gonzalez-Castillo, J. et al. Imaging the spontaneous flow of thought: Distinct periods of cognition contribute to dynamic functional 

connectivity during rest. NeuroImage 202, 116129 (2019).
	39.	 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
	40.	 Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
	41.	 Lenth, R. V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1 (2021).
	42.	 R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

Acknowledgements
This study was funded by the European Union (ERA PerMed JTC2019 “PerBrain”, grant to JDS) and the Canada 
Excellence Research Chairs (CERC) program (Grant No. 215063 to AMO). BT received a PhD grant from French 
Ministry of Higher Education and Ecole Normale Supérieur. AMO is a Fellow of the CIFAR Brain, Mind, and 
Consciousness program.
Authors would like to thank Garance Merholz for her feedback on the manuscript and Esteban Munoz Musat 
for helpful discussions.

Author contributions
Conceptualization: B.T., A.O., L.N., J.S.; Data collection: A.O., L.N.; Data analysis: B.T., L.B., J.S.; Visualization: 
B.T.; Supervision: L.N., J.S.; Writing: B.T., L.N., J.S.

Competing interests 
The authors declare no competing interests.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21260  | https://doi.org/10.1038/s41598-023-48656-7

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​48656-7.

Correspondence and requests for materials should be addressed to B.T. or J.D.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-48656-7
https://doi.org/10.1038/s41598-023-48656-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Processing of the same narrative stimuli elicits common functional connectivity dynamics between individuals
	Results
	Discussion
	Method
	Participants and procedure
	MRI acquisition parameters
	ROI selection
	fMRI preprocessing
	Time-varying functional connectivity patterns
	K-means clustering procedure
	Inter-subject similarity index
	Suspense rating
	Instantaneous co-occurrence
	Temporal pattern consistency
	Statistical analyses

	References
	Acknowledgements


